42 research outputs found

    Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults

    Get PDF
    Aging is associated with changes in the immune system, increased inflammation and mitochondrial dysfunction. The relationship between these phenomena and the clinical phenotype of frailty is unclear. Here, we evaluated the immune phenotypes, T cell functions and mitochondrial functions of immune cells in frail and robust older subjects. We enrolled 20 frail subjects age- and gender-matched with 20 robust controls, and T cell phenotype, response to immune stimulation, cytokine production and immune cell mitochondrial function were assessed. Our results showed that numbers of CD4+ and CD8+ T cells were decreased in frail subjects, without impairment to their ratios. Memory and naïve T cells were not significantly affected by frailty, whereas the expression of CD28 but not that of ICOS was decreased in T cells from frail subjects. T cells from robust subjects produced more IL-17 after CD28 stimulation. Levels of serum cytokines were similar in frail subjects and controls. Mitochondrial bioenergetics and ATP levels were significantly lower in immune cells from frail subjects. In conclusion, we suggest that changes in T cell profiles are associated with aging rather than with frailty syndrome; however, changes in T cell response to immune stimuli and reduced mitochondrial activity in immune cells may be considered hallmarks of frailty

    Simvastatin and downstream inhibitors circumvent constitutive and stromal cell-induced resistance to doxorubicin in IGHV unmutated CLL cells

    Get PDF
    The immunoglobulin heavy-chain variable region (IGHV) mutational status is a strong determinant of remission duration in chronic lymphocytic leukemia (CLL). The aim of this work was to compare the multidrug resistance (MDR) signature of IGHV mutated and unmutated CLL cells, identifying biochemical and molecular targets potentially amenable to therapeutic intervention.We found that the mevalonate pathway-dependent Ras/ERK1-2 and RhoA/RhoA kinase signaling cascades, and the downstream HIF-1\u3b1/P-glycoprotein axis were more active in IGHV unmutated than in mutated cells, leading to a constitutive protection from doxorubicin-induced cytotoxicity. The constitutive MDR phenotype of IGHV unmutated cells was partially dependent on B cell receptor signaling, as shown by the inhibitory effect exerted by ibrutinib. Stromal cells further protected IGHV unmutated cells from doxorubicin by upregulating Ras/ERK1-2, RhoA/RhoA kinase, Akt, HIF-1\u3b1 and P-glycoprotein activities. Mevalonate pathway inhibition with simvastatin abrogated these signaling pathways and reversed the resistance of IGHV unmutated cells to doxorubicin, also counteracting the protective effect exerted by stromal cells. Similar results were obtained via the targeted inhibition of the downstream molecules ERK1-2, RhoA kinase and HIF-1\u3b1.Therefore, targeting the mevalonate pathway and its downstream signaling cascades is a promising strategy to circumvent the MDR signature of IGHV unmutated CLL cells

    Folate-targeted liposomal nitrooxy-doxorubicin: an effective tool against P-glycoprotein-positive and folate receptor-positive tumors

    Get PDF
    Drug efflux transporters, in particular P-glycoprotein (Pgp), limit the success of chemotherapy. We previously found that synthetic doxorubicin conjugated with nitric oxide (NO)-releasing group overcomes resistance by inducing a NO-mediated inhibition of Pgp. Here we produced the first liposomal formulations of this nitrooxy-doxorubicin decorated with folic acid (FA), termed LNDF, in order to improve their active targeting against Pgp-expressing tumors. Folate was inserted onto liposomes surface using two different methods and the formulations were compared with respect to their technological features and in vitro behavior. By analyzing human and murine breast cancer cells with different expression of FA receptor (FAR) and Pgp, we demonstrated that LNDF are internalized in a FAR-dependent manner and achieve maximal anti-tumor efficacy against FAR-positive/Pgp-positive cells. Upon uptake of LNDF, nitrooxy-doxorubicin was delivered within nucleus, where it induced cell cycle arrest and DNA damages, and mitochondria, where it impaired the mitochondrial energy metabolism and triggered mitochondria-dependent apoptosis. LNDF reduced the growth of FAR-positive/Pgp-positive tumors and prevented tumor formation in mice, whereas doxorubicin and Caelyx®failed. LNDF cardiotoxicity was comparable to Caelyx®. The sensitivity to LNDF was maintained in tumors exposed to repeated cycles of the drug and in cells derived from the exposed tumors, excluding the onset of secondary resistance. By combining an innovative multitarget cargo drug, conceived to achieve high efficacy against Pgp-expressing cells, and appropriate strategies of liposome formulation and decoration, we produced a therapeutic tool that may represent a significant advancement in the treatment of FAR-positive/Pgp-positive tumors

    Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults

    No full text
    Aging is associated with changes in the immune system, increased inflammation and mitochondrial dysfunction. The relationship between these phenomena and the clinical phenotype of frailty is unclear. Here, we evaluated the immune phenotypes, T cell functions and mitochondrial functions of immune cells in frail and robust older subjects. We enrolled 20 frail subjects age- and gender-matched with 20 robust controls, and T cell phenotype, response to immune stimulation, cytokine production and immune cell mitochondrial function were assessed. Our results showed that numbers of CD4+ and CD8+ T cells were decreased in frail subjects, without impairment to their ratios. Memory and naïve T cells were not significantly affected by frailty, whereas the expression of CD28 but not that of ICOS was decreased in T cells from frail subjects. T cells from robust subjects produced more IL-17 after CD28 stimulation. Levels of serum cytokines were similar in frail subjects and controls. Mitochondrial bioenergetics and ATP levels were significantly lower in immune cells from frail subjects. In conclusion, we suggest that changes in T cell profiles are associated with aging rather than with frailty syndrome; however, changes in T cell response to immune stimuli and reduced mitochondrial activity in immune cells may be considered hallmarks of frailty

    Musculoskeletal Diseases Role in the Frailty Syndrome: A Case–Control Study

    No full text
    Frailty syndrome severely burdens older age, and musculoskeletal diseases are of paramount importance in its development. The aim of this study is to unravel the contribution of musculoskeletal diseases to frailty syndrome. This is a case–control study, and we enrolled 55 robust community-dwelling age- and gender-matched patients, with 58 frail and pre-frail subjects. Frailty was diagnosed according to the Fried criteria (FP), and the Fragility Index (FI) was calculated. In all the subjects, a comprehensive geriatric assessment was carried out. Their nutritional status was evaluated by the Mini Nutritional Assessment and Bioelectrical Impedance Analyses. Their bone density (BMD), bone turnover, muscle mass, strength and performance were evaluated. Here, we show that the prevalence of frailty varies according to the diagnostic criteria used and that FP and FI showed a moderate to good agreement. Despite age and gender matching, frail subjects had lower muscle strength, performance and BMD. Their quality of life and cognitive performance were reduced in the frail subjects compared to the robust ones. Muscular strength and performance, together with mood, significantly predicted the diagnosis of frailty, whereas BMD and bone turnover did not. In conclusion, we show that sarcopenia plays a pivotal role in predicting the diagnosis of frailty, whereas osteoporosis does not
    corecore