165 research outputs found

    Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin

    Full text link
    Hyperdoping has emerged as a promising method for designing semiconductors with unique optical and electronic properties, although such properties currently lack a clear microscopic explanation. Combining computational and experimental evidence, we probe the origin of sub-band gap optical absorption and metallicity in Se-hyperdoped Si. We show that sub-band gap absorption arises from direct defect-to-conduction band transitions rather than free carrier absorption. Density functional theory predicts the Se-induced insulator-to-metal transition arises from merging of defect and conduction bands, at a concentration in excellent agreement with experiment. Quantum Monte Carlo calculations confirm the critical concentration, demonstrate that correlation is important to describing the transition accurately, and suggest that it is a classic impurity-driven Mott transition.Comment: 5 pages, 3 figures (PRL formatted

    Effective lifetimes exceeding 300 μs in gettered p-type epitaxial kerfless silicon for photovoltaics

    Get PDF
    We evaluate defect concentrations and investigate the lifetime potential of p-type single-crystal kerfless silicon produced via epitaxy for photovoltaics. In gettered material, low interstitial iron concentrations (as low as (3.2 ± 2.2) × 10[superscript 9] cm[superscript −3]) suggest that minority-carrier lifetime is not limited by dissolved iron. An increase in gettered lifetime from 300 μs is observed after increasing growth cleanliness. This improvement coincides with reductions in the concentration of Mo, V, Nb, and Cr impurities, but negligible change in the low area-fraction (23%.United States. Dept. of Energy (Contract DE-EE0005314)National Science Foundation (U.S.) (United States. Dept. of Energy NSF CA EEC-1041895)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipAlexander von Humboldt-Stiftung (Feodor Lynen Postdoctoral Fellowship

    Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: A case study in sulfur-hyperdoped silicon

    Get PDF
    We present a methodology for estimating the efficiency potential for candidate impurity-band photovoltaic materials from empirical measurements. This methodology employs both Fourier transform infrared spectroscopy and low-temperature photoconductivity to calculate a “performance figure of merit” and to determine both the position and bandwidth of the impurity band. We evaluate a candidate impurity-band material, silicon hyperdoped with sulfur; we find that the figure of merit is more than one order of magnitude too low for photovoltaic devices that exceed the thermodynamic efficiency limit for single band gap materials.National Science Foundation (U.S.) (Energy, Power, and Adaptive Systems Grant Contract ECCS-1102050)National Science Foundation (U.S.) (United States. Dept. of Energy NSF CA EEC-1041895)Center for Clean Water and Clean Energy at MIT and KFUP

    Precipitated iron: a limit on gettering efficacy in multicrystalline silicon

    Get PDF
    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells

    A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    Get PDF
    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm[superscript 2] 2-terminal monolithic perovskite/silicon multijunction solar cell with a V [subscript OC] as high as 1.65 V. We achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.Bay Area Photovoltaic Consortium (Contract DE-EE0004946)United States. Dept. of Energy (Contract DE-EE0006707

    Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    Full text link
    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v D, of Au and Zn, and put lower bounds on v D of the other metals ranging from 10² to 10⁴ m/s. Knowledge of v D is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10¹⁹ Au/cm³ without cellular breakdown. Values of v D are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D s(T m), and the equilibrium partition coefficient, k e, are shown to simultaneously affect v D. We demonstrate a correlation between v D and the ratio D s(T m)/k e ⁰·⁶⁷, which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D s(T m)/k e ⁰·⁶⁷ might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM.Research at Harvard was supported by The U.S. Army Research Office under contracts W911NF-12-1-0196 and W911NF-09-1-0118. M.T.W. and T.B.’s work was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant No. W911NF-10-1-0442, and the National Science Foundation (NSF) Faculty Early Career Development Program ECCS-1150878 (to T.B.). M.J.S., J.T.S., M.T.W., T.B., and S.G. acknowledge a generous gift from the Chesonis Family Foundation and support in part by the National Science Foundation (NSF) and the Department of Energy (DOE) under NSF CA No. EEC- 1041895. S.C. and J.S.W.’s work was supported by The Australian Research Council. J.M. was supported by a National Research Council Research Associateship

    Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    Get PDF
    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v [subscript D], of Au and Zn, and put lower bounds on v [subscript D] of the other metals ranging from 10[superscript 2] to 10[superscript 4] m/s. Knowledge of v [subscript D] is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10[superscript 19] Au/cm[superscript 3] without cellular breakdown. Values of v [subscript D] are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D [subscript s](T [subscript m]), and the equilibrium partition coefficient, k [subscript e], are shown to simultaneously affect v [subscript D]. We demonstrate a correlation between v [subscript D] and the ratio D [subscript s](T [subscript m])/k [subscript e] [superscript 0.67], which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D [subscript s](T [subscript m])/k [subscript e] [superscript 0.67] might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM.National Science Foundation (U.S.) (Faculty Early Career Development Program ECCS-1150878)Chesonis Family FoundationUnited States. Army Research Laboratory (United States. Army Research Office Grant W911NF-10-1-0442)National Science Foundation (U.S.) (United States. Dept. of Energy NSF CA EEC-1041895

    Nickel: A very fast diffuser in silicon

    Get PDF
    Nickel is increasingly used in both IC and photovoltaic device fabrication, yet it has the potential to create highly recombination-active precipitates in silicon. For nearly three decades, the accepted nickel diffusivity in silicon has been DNi(T)=2.3×10exp−3 exp(−0.47 eV/kBT) cm2/s, a surprisingly low value given reports of rapid nickel diffusion in industrial applications. In this paper, we employ modern experimental methods to measure the higher nickel diffusivity DNi(T)=(1.69±0.74)×10exp−4 exp(−0.15±0.04 eV/kBT)  cm2/s. The measured activation energy is close to that predicted by first-principles theory using the nudged-elastic-band method. Our measured diffusivity of nickel is higher than previously published values at temperatures below 1150 °C, and orders of magnitude higher when extrapolated to room temperature.Peer reviewe
    corecore