70 research outputs found

    Tandem application of C-C bond-forming reactions with reductive ozonolysis

    Get PDF
    Several variants of reductive ozonolysis, defined here as the in situ generation of aldehydes or ketones during ozonolytic cleavage of alkenes, are demonstrated to work effectively in tandem with a number of C-C bond-forming reactions. For reactions involving basic nucleophiles (1,2- addition of Grignard reagents, Wittig or Horner-Emmons olefinations, and directed Aldol reactions of lithium enolates) the one-pot process offers a rapid and high-yielding alternative to traditional two-step protocols

    Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran

    Full text link
    2-Pyrones, such as triacetic acid lactone, are a promising class of biorenewable platform chemicals that provide access to an array of chemical products and intermediates. We illustrate through the combination of results from experimental studies and first-principle density functional theory calculations that key structural features dictate the mechanisms underlying ring-opening and decarboxylation of 2-pyrones, including the degree of ring saturation, the presence of C═C bonds at the C4═C5 or C5═C6 positions within the ring, as well as the presence of a β-keto group at the C4 position. Our results demonstrate that 2-pyrones undergo a range of reactions unique to their structure, such as retro-Diels–Alder reactions and nucleophilic addition of water. In addition, the reactivity of 2-pyrones and the final products formed is shown to depend on the solvent used and the acidity of the reaction environment. The mechanistic insights obtained here provide guidance for the selective conversion of 2-pyrones to targeted chemicals.Reprinted (adapted) with permission from Journal of American Chemical Society, 135(15); 5699-5708. Doi: 10.1021/ja312075r. Copyright 2013 American Chemical Society. </p

    Ring Expansion of Cyclobutylmethylcarbenium Ions to Cyclopentane or Cyclopentene Derivatives and Metal-Promoted Analogous Rearrangements

    Full text link

    Criegee mechanism of ozonolysis

    No full text

    Structure-activity studies and analgesic efficacy of N-(3-pyridinyl)-bridged bicyclic diamines, exceptionally potent agonists at nicotinic acetylcholine receptors

    No full text
    A series of exceptionally potent agonists at neuronal nicotinic acetylcholine receptors (nAChRs) has been investigated. Several N-(3-pyridinyl) derivatives of bridged bicyclic diamines exhibit double-digit-picomolar binding affinities for the α4β2 subtype, placing them with epibatidine among the most potent nAChR ligands described to date. Structure-activity studies have revealed that substitutions, particularly hydrophilic groups in the pyridine 5-position, differentially modulate the agonist activity at ganglionic vs central nAChR subtypes, so that improved subtype selectivity can be demonstrated in vitro. Analgesic efficacy has been achieved across a broad range of pain states, including rodent models of acute thermal nociception, persistent pain, and neuropathic allodynia. Unfortunately, the hydrophilic pyridine substituents that were shown to enhance agonist selectivity for central nAChRs in vitro tend to limit CNS penetration in vivo, so that analgesic efficacy with an improved therapeutic window was not realized with those compounds
    corecore