5,665 research outputs found

    Sensitivity of a Bolometric Interferometer to the CMB power spectrum

    Full text link
    Context. The search for B-mode polarization fluctuations in the Cosmic Microwave Background is one of the main challenges of modern cosmology. The expected level of the B-mode signal is very low and therefore requires the development of highly sensitive instruments with low systematic errors. An appealing possibility is bolometric interferometry. Aims. We compare in this article the sensitivity on the CMB angular power spectrum achieved with direct imaging, heterodyne and bolometric interferometry. Methods. Using a simple power spectrum estimator, we calculate its variance leading to the counterpart for bolometric interferometry of the well known Knox formula for direct imaging. Results. We find that bolometric interferometry is less sensitive than direct imaging. However, as expected, it is finally more sensitive than heterodyne interferometry due to the low noise of the bolometers. It therefore appears as an alternative to direct imagers with different and possibly lower systematic errors, mainly due to the absence of an optical setup in front of the horns.Comment: 5 pages, 3 figures. This last version matches the published version (Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne Interferometers modified by a factor of tw

    The Becklin-Neugebauer Object as a Runaway B Star, Ejected 4000 years ago from the theta^1C system

    Full text link
    We attempt to explain the properties of the Becklin-Neugebauer (BN) object as a runaway B star, as originally proposed by Plambeck et al. (1995). This is one of the best-studied bright infrared sources, located in the Orion Nebula Cluster -- an important testing ground for massive star formation theories. From radio observations of BN's proper motion, we trace its trajectory back to Trapezium star theta^1C, the most massive (45 Msun) in the cluster and a relatively tight (17 AU) visual binary with a B star secondary. This origin would be the most recent known runaway B star ejection event, occurring only \~4000 yr ago and providing a unique test of models of ejection from multiple systems of massive stars. Although highly obscured, we can constrain BN's mass (~7 Msun) from both its bolometric luminosity and the recoil of theta^1C. Interaction of a runaway B star with dense ambient gas should produce a compact wind bow shock. We suggest that X-ray emission from this shocked gas may have been seen by Chandra: the offset from the radio position is ~300 AU in the direction of BN's motion. Given this model, we constrain the ambient density, wind mass-loss rate and wind velocity. BN made closest approach to the massive protostar, source ``I'', 500 yr ago. This may have triggered enhanced accretion and thus outflow, consistent with previous interpretations of the outflow being a recent (~10^3 yr) "explosive" event.Comment: 6 pages, accepted to ApJ Letter

    Setting priorities to inform assessment of care homes’ readiness to participate in healthcare innovation: a systematic mapping review and consensus process

    Get PDF
    © 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedOrganisational context is known to impact on the successful implementation of healthcare initiatives in care homes. We undertook a systematic mapping review to examine whether researchers have considered organisational context when planning, conducting, and reporting the implementation of healthcare innovations in care homes. Review data were mapped against the Alberta Context Tool, which was designed to assess organizational context in care homes. The review included 56 papers. No studies involved a systematic assessment of organisational context prior to implementation, but many provided post hoc explanations of how organisational context affected the success or otherwise of the innovation. Factors identified to explain a lack of success included poor senior staff engagement, non-alignment with care home culture, limited staff capacity to engage, and low levels of participation from health professionals such as general practitioners (GPs). Thirty-five stakeholders participated in workshops to discuss findings and develop questions for assessing care home readiness to participate in innovations. Ten questions were developed to initiate conversations between innovators and care home staff to support research and implementation. This framework can help researchers initiate discussions about health-related innovation. This will begin to address the gap between implementation theory and practice.Peer reviewe

    Proceedings of the Spacecraft Charging Technology Conference: Executive Summary

    Get PDF
    Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    Mosaicking with cosmic microwave background interferometers

    Get PDF
    Measurements of cosmic microwave background (CMB) anisotropies by interferometers offer several advantages over single-dish observations. The formalism for analyzing interferometer CMB data is well developed in the flat-sky approximation, valid for small fields of view. As the area of sky is increased to obtain finer spectral resolution, this approximation needs to be relaxed. We extend the formalism for CMB interferometry, including both temperature and polarization, to mosaics of observations covering arbitrarily large areas of the sky, with each individual pointing lying within the flat-sky approximation. We present a method for computing the correlation between visibilities with arbitrary pointing centers and baselines and illustrate the effects of sky curvature on the l-space resolution that can be obtained from a mosaic.Comment: 9 pages; submitted to Ap

    Systematic Errors in Cosmic Microwave Background Interferometry

    Get PDF
    Cosmic microwave background (CMB) polarization observations will require superb control of systematic errors in order to achieve their full scientific potential, particularly in the case of attempts to detect the B modes that may provide a window on inflation. Interferometry may be a promising way to achieve these goals. This paper presents a formalism for characterizing the effects of a variety of systematic errors on interferometric CMB polarization observations, with particular emphasis on estimates of the B-mode power spectrum. The most severe errors are those that couple the temperature anisotropy signal to polarization; such errors include cross-talk within detectors, misalignment of polarizers, and cross-polarization. In a B mode experiment, the next most serious category of errors are those that mix E and B modes, such as gain fluctuations, pointing errors, and beam shape errors. The paper also indicates which sources of error may cause circular polarization (e.g., from foregrounds) to contaminate the cosmologically interesting linear polarization channels, and conversely whether monitoring of the circular polarization channels may yield useful information about the errors themselves. For all the sources of error considered, estimates of the level of control that will be required for both E and B mode experiments are provided. Both experiments that interfere linear polarizations and those that interfere circular polarizations are considered. The fact that circular experiments simultaneously measure both linear polarization Stokes parameters in each baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200
    • …
    corecore