5,665 research outputs found
Sensitivity of a Bolometric Interferometer to the CMB power spectrum
Context. The search for B-mode polarization fluctuations in the Cosmic
Microwave Background is one of the main challenges of modern cosmology. The
expected level of the B-mode signal is very low and therefore requires the
development of highly sensitive instruments with low systematic errors. An
appealing possibility is bolometric interferometry. Aims. We compare in this
article the sensitivity on the CMB angular power spectrum achieved with direct
imaging, heterodyne and bolometric interferometry. Methods. Using a simple
power spectrum estimator, we calculate its variance leading to the counterpart
for bolometric interferometry of the well known Knox formula for direct
imaging. Results. We find that bolometric interferometry is less sensitive than
direct imaging. However, as expected, it is finally more sensitive than
heterodyne interferometry due to the low noise of the bolometers. It therefore
appears as an alternative to direct imagers with different and possibly lower
systematic errors, mainly due to the absence of an optical setup in front of
the horns.Comment: 5 pages, 3 figures. This last version matches the published version
(Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne
Interferometers modified by a factor of tw
The Becklin-Neugebauer Object as a Runaway B Star, Ejected 4000 years ago from the theta^1C system
We attempt to explain the properties of the Becklin-Neugebauer (BN) object as
a runaway B star, as originally proposed by Plambeck et al. (1995). This is one
of the best-studied bright infrared sources, located in the Orion Nebula
Cluster -- an important testing ground for massive star formation theories.
From radio observations of BN's proper motion, we trace its trajectory back
to Trapezium star theta^1C, the most massive (45 Msun) in the cluster and a
relatively tight (17 AU) visual binary with a B star secondary. This origin
would be the most recent known runaway B star ejection event, occurring only
\~4000 yr ago and providing a unique test of models of ejection from multiple
systems of massive stars. Although highly obscured, we can constrain BN's mass
(~7 Msun) from both its bolometric luminosity and the recoil of theta^1C.
Interaction of a runaway B star with dense ambient gas should produce a compact
wind bow shock. We suggest that X-ray emission from this shocked gas may have
been seen by Chandra: the offset from the radio position is ~300 AU in the
direction of BN's motion. Given this model, we constrain the ambient density,
wind mass-loss rate and wind velocity. BN made closest approach to the massive
protostar, source ``I'', 500 yr ago. This may have triggered enhanced accretion
and thus outflow, consistent with previous interpretations of the outflow being
a recent (~10^3 yr) "explosive" event.Comment: 6 pages, accepted to ApJ Letter
Setting priorities to inform assessment of care homes’ readiness to participate in healthcare innovation: a systematic mapping review and consensus process
© 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedOrganisational context is known to impact on the successful implementation of healthcare initiatives in care homes. We undertook a systematic mapping review to examine whether researchers have considered organisational context when planning, conducting, and reporting the implementation of healthcare innovations in care homes. Review data were mapped against the Alberta Context Tool, which was designed to assess organizational context in care homes. The review included 56 papers. No studies involved a systematic assessment of organisational context prior to implementation, but many provided post hoc explanations of how organisational context affected the success or otherwise of the innovation. Factors identified to explain a lack of success included poor senior staff engagement, non-alignment with care home culture, limited staff capacity to engage, and low levels of participation from health professionals such as general practitioners (GPs). Thirty-five stakeholders participated in workshops to discuss findings and develop questions for assessing care home readiness to participate in innovations. Ten questions were developed to initiate conversations between innovators and care home staff to support research and implementation. This framework can help researchers initiate discussions about health-related innovation. This will begin to address the gap between implementation theory and practice.Peer reviewe
Proceedings of the Spacecraft Charging Technology Conference: Executive Summary
Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment
VLTI/MIDI 10 micron interferometry of the forming massive star W33A
We report on resolved interferometric observations with VLTI/MIDI of the
massive young stellar object (MYSO) W33A. The MIDI observations deliver
spectrally dispersed visibilities with values between 0.03 and 0.06, for a
baseline of 45m over the wavelength range 8-13 micron. The visibilities
indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron
which increases to 240AU at 13 micron, scales previously unexplored among
MYSOs. This observed trend is consistent with the temperature falling off with
distance. 1D dust radiative transfer models are simultaneously fit to the
visibility spectrum, the strong silicate feature and the shape of the mid
infrared spectral energy distribution (SED). For any powerlaw density
distribution, we find that the sizes (as implied by the visibilities) and the
stellar luminosity are incompatible. A reduction to a third of W33A's
previously adopted luminosity is required to match the visibilities; such a
reduction is consistent with new high resolution 70 micron data from Spitzer's
MIPSGAL survey. We obtain best fits for models with shallow dust density
distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the
silicate feature produced by decreasing the ISM ratio of graphite to silicates
and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter
Mosaicking with cosmic microwave background interferometers
Measurements of cosmic microwave background (CMB) anisotropies by
interferometers offer several advantages over single-dish observations. The
formalism for analyzing interferometer CMB data is well developed in the
flat-sky approximation, valid for small fields of view. As the area of sky is
increased to obtain finer spectral resolution, this approximation needs to be
relaxed. We extend the formalism for CMB interferometry, including both
temperature and polarization, to mosaics of observations covering arbitrarily
large areas of the sky, with each individual pointing lying within the flat-sky
approximation. We present a method for computing the correlation between
visibilities with arbitrary pointing centers and baselines and illustrate the
effects of sky curvature on the l-space resolution that can be obtained from a
mosaic.Comment: 9 pages; submitted to Ap
Systematic Errors in Cosmic Microwave Background Interferometry
Cosmic microwave background (CMB) polarization observations will require
superb control of systematic errors in order to achieve their full scientific
potential, particularly in the case of attempts to detect the B modes that may
provide a window on inflation. Interferometry may be a promising way to achieve
these goals. This paper presents a formalism for characterizing the effects of
a variety of systematic errors on interferometric CMB polarization
observations, with particular emphasis on estimates of the B-mode power
spectrum. The most severe errors are those that couple the temperature
anisotropy signal to polarization; such errors include cross-talk within
detectors, misalignment of polarizers, and cross-polarization. In a B mode
experiment, the next most serious category of errors are those that mix E and B
modes, such as gain fluctuations, pointing errors, and beam shape errors. The
paper also indicates which sources of error may cause circular polarization
(e.g., from foregrounds) to contaminate the cosmologically interesting linear
polarization channels, and conversely whether monitoring of the circular
polarization channels may yield useful information about the errors themselves.
For all the sources of error considered, estimates of the level of control that
will be required for both E and B mode experiments are provided. Both
experiments that interfere linear polarizations and those that interfere
circular polarizations are considered. The fact that circular experiments
simultaneously measure both linear polarization Stokes parameters in each
baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
Mobile Computing in Physics Analysis - An Indicator for eScience
This paper presents the design and implementation of a Grid-enabled physics
analysis environment for handheld and other resource-limited computing devices
as one example of the use of mobile devices in eScience. Handheld devices offer
great potential because they provide ubiquitous access to data and
round-the-clock connectivity over wireless links. Our solution aims to provide
users of handheld devices the capability to launch heavy computational tasks on
computational and data Grids, monitor the jobs status during execution, and
retrieve results after job completion. Users carry their jobs on their handheld
devices in the form of executables (and associated libraries). Users can
transparently view the status of their jobs and get back their outputs without
having to know where they are being executed. In this way, our system is able
to act as a high-throughput computing environment where devices ranging from
powerful desktop machines to small handhelds can employ the power of the Grid.
The results shown in this paper are readily applicable to the wider eScience
community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing
& Ubiquitous Networking (ICMU06. London October 200
- …