10 research outputs found

    Efficacy of Prasaplai for Treatment of Primary Dysmenorrhea: a Meta-Analysis

    Get PDF
    Prasaplai is used in Thai traditional medicine for treatment of primary dysmenorrhea; however, clinical evidence is limited regarding the efficacy of Prasaplai for primary dysmenorrheal outcomes. This study has constituted a systematic review and meta-analysis to evaluate Prasaplai as an effective treatment for primary dysmenorrhea. Randomized controlled trials were retrieved and identified through electronic searches (PubMed, CINAHL, Cochrane Central Register of Controlled Trials, SCOPUS, Science Direct, and ThaiLis publications until May 2017). A hand search for relevant trials was also conducted. Quality of the selected trials was assessed using Jadad’s scoring and A Cochrane Risk of Bias Assessment Tool. Studies were recruited for the meta-analysis if 1) they were randomized controlled trials, 2) participants were diagnosed with primary dysmenorrhea, and 3) a pain score was included. Related outcomes and adverse events were also evaluated for all groups. Four randomized controlled trials met the criteria, totaling 460 participants. Results revealed that Prasaplai significantly improved pain scores. The pooled mean difference was -1.24 (95% CI -1.90 to -0.59; p = 0.0002). The results did not indicate significant effects of Prasaplai on menstrual characteristics and associated symptoms, compared with NSAIDs; however, participants receiving Prasaplai reported a low frequency of adverse effects compared to the NSAID group. Current evidence suggests that Prasaplai improved pain associated with primary dysmenorrhea. Prasaplai had no effect on menstrual characteristics and associated symptoms. Additional rigorously-designed trials with larger sample sizes are warranted to confirm the effects of Prasaplai on primary dysmenorrhea and related outcomes.<br /

    Dihydromyricetin Attenuates Streptozotocin-induced Liver Injury and Inflammation in Rats via Regulation of NF-κB and AMPK Signaling Pathway

    Get PDF
    open access articleDihydromyricetin (DHM) dramatically improved the quality of life for Streptozotocin (STZ)-induced diabetic rats and significantly increased the activity of antioxidant enzymes in the liver. Moreover, DHM successfully ameliorated diabetes-induced liver damage by suppression of apoptosis in the liver, as indicated by the decreased levels of Bax and cleaved caspase-3. In diabetic rats, the levels of tumor necrosis factor-α and interleukin-1β in the liver were significantly increased. However, the administration of DHM (100–400 mg/kg/day) for 6 weeks restored the cytokine levels to their normal values in a dose-dependent manner in diabetic rats by the regulation of nuclear factor-kappa B signaling pathway. In addition, DHM significantly induced 5' AMP-activated protein kinase (AMPK) phosphorylation and decreased MyD88, TLR4, p38, GSK-3β protein expression levels in the liver of diabetic rats. In conclusion, DHM could improve STZ-induced liver impairment by preventing oxidative stress, apoptosis, and inflammation

    Effectiveness of <i>Zingiber montanum</i> Herbal Compress Remedy for Pain Management: An Updated Systematic Review and Meta-Analysis

    No full text
    The Zingiber montanum herbal compress remedy is a type of herbal medicine that can be used as an alternative treatment for improving pain symptoms. This study aimed to evaluate the clinical efficacy of a Z. montanum herbal compress remedy for pain relief. PubMed, Scopus, ScienceDirect, and Thai databases were systematically searched for relevant articles published from inception to December 2022. Only randomized clinical trials (RCTs) wherein the efficacy of the Z. montanum remedy was compared to that of a placebo or non-steroidal anti-inflammatory drugs (NSAIDs) were included. Six RCTs with a total of 812 patients were included in the analysis. The efficacy of the Z. montanum remedy had a significantly decreased pain score compared to the placebo (SMD = −0.63; 95% CI = −1.20, −0.06; I2 = 90%), but there was no significant difference when compared to NSAIDs (SMD = −0.61; 95% CI = −1.41, 0.81; I2 = 73%). Moreover, the efficacy of the Z. montanum remedy in terms of the flexibility score (SMD = 0.59; 95% CI −0.56, 1.74; I2 = 86.0%) and quality of life (SMD = 0.34; 95% CI −0.38, 1.05; I2 = 81.0%) was similar to that of the placebo. This meta-analysis demonstrates that the use of the Z. montanum herbal compress remedy significantly reduces the pain scores reported by patients

    Chemical Composition, Antioxidant and Cytotoxicity Activities of Leaves, Bark, Twigs and Oleo-Resin of Dipterocarpus alatus

    No full text
    Dipterocarpus alatus (Dipterocarpaceae) is a medicinal plant whose use is well known for the treatment of genito-urinary diseases. However, there is no report of its cytotoxic potential. In this study, the chemical composition, antioxidant and cytotoxic activities of extracts of the leaves, bark, twigs and oleo-resin from D. alatus are investigated. Cytotoxicity was measured by the neutral red (NR) assay against HCT116, SKLU1, SK-MEL2, SiHa and U937 cancer cell lines and antioxidant capacity was evaluated by DPPH, ABTS radical scavenging, and ferric reducing antioxidant power (FRAP) assays. The chemical composition was analyzed by gas chromatography&ndash;mass spectrometry (GC-MS). Leaf, bark and twig extracts exhibited stronger antioxidant activity than oleo-resin, with bark extract showing the highest antioxidant activity and the highest total phenolic content. All samples showed more cytotoxic activity against the U937 cell line than HCT116, SKLU1, SK-MEL2 and SiHa cells with oleo-resin being more cytotoxic than melphalan against U937 cells. Chemical composition analysis of oleo-resin by GC-MS showed that the major components were sesquiterpenes, namely &alpha;-gurjunene (30.31%), (-)-isoledene (13.69%), alloaromadendrene (3.28%), &beta;-caryophyllene (3.14%), &gamma;-gurjunene (3.14%) and spathulenol (1.11%). The cytotoxic activity of oleo-resin can be attributed to the sesquiterpene content, whereas the cytotoxic and antioxidant activities of leaf, bark and twig extracts correlated to total phenolic content

    Dipterocarpol in Oleoresin of Dipterocarpus alatus Attributed to Cytotoxicity and Apoptosis-Inducing Effect

    No full text
    Dipterocarpus alatus Roxb. ex G. Don is widely found in Southeast Asia. Its oleo-resin has reportedly been used in biodiesel production. Two different biodiesel production processes produce resinous byproducts, namely degumming (DG) and distillation (DT). Gas chromatography-mass spectrometry identified sesquiterpenes and triterpenes in oleo-resin, DG, and DT; and long-chain hydrocarbons in oleo-resin. High-performance liquid chromatography detected dipterocarpol as a marker compound, with the highest to lowest amounts detected in DG, DT, and oleo-resin, respectively. Oleo-resin, DG, and DT exerted more cytotoxicity than dipterocarpol, and melphalan, a chemotherapeutic drug. Oleo-resin, DG, and DT exerted cytotoxicity to a different degree in T cell leukemia (Jurkat), cervical adenocarcinoma (HeLa), and human hepatocellular carcinoma (HepG2) cells, while the highest selectivity was found in the Jurkat cells compared to the non-cancer Vero cells. Dipterocarpol exhibited the highest cytotoxicity in HepG2 cells and the lowest cytotoxicity in Jurkat cells. Oleo-resin, DG, and DT induced apoptosis in Jurkat cells. In oleo-resin, DG, and DT, dipterocarpol and other compounds may act in synergy leading to cytotoxicity and an apoptosis-inducing effect. Oleo-resin, DG, and DT could be potential sources for anticancer agents. Dipterocarpol could serve as a biomarker for follow ups on the anticancer activity of a sample from D. alatus

    Impact of Tea Processing on Tryptophan, Melatonin, Phenolic and Flavonoid Contents in Mulberry (<i>Morus alba</i> L.) Leaves: Quantitative Analysis by LC-MS/MS

    No full text
    Mulberry (Morus alba L.) leaves from two cultivars, Yai-Burirum (YB) and Khunphai (KP), were prepared into green tea (GT) and black tea (BT). Compared to fresh leaf (FL) extract, GT and BT extracts were evaluated for their total phenolic and total flavonoid contents. Total phenolic content (TPCs) in all samples ranged between 129.93 and 390.89 mg GAE/g extract. The processing of tea decreased the levels of TPC when compared to FL extracts in both cultivars. The total flavonoid content (TFCs) in all samples was found in the range of 10.15–39.09 mg QE/g extract and TFCs in GT and BT extracts were higher than FL extracts. The change in tryptophan, melatonin, phenolic and flavonoid contents was investigated by liquid chromatography–mass spectroscopy (LC-MS). The results exhibited that tryptophan contents in all samples were detected in the range 29.54–673.72 µg/g extract. Both GT and BT extracts increased tryptophan content compared to FL extracts. BT extracts presented the highest amounts of tryptophan among others in both cultivars. Phenolic compounds were found in mulberry leaf extracts, including gallic acid, caffeic acid, gentisic acid, protocatechuic acid and chlorogenic acid. Chlorogenic acid presented the highest amount in all samples. Almost all phenolic acids were increased in the processed tea extracts except chlorogenic acid. Rutin was the only flavonoid that was detected in all extracts in the range 109.48–1009.75 mg/g extract. The change in phenolic and flavonoid compounds during tea processing resulted in the change in antioxidant capacities of the GT and BT extracts. All extracts presented acetylcholinesterase enzyme (AChE) inhibitory activity with IC50 in the range 146.53–165.24 µg/mL. The processing of tea slightly increased the AChE inhibitory effect of GT and BT extracts. In conclusion, processed tea from mulberry leaves could serve as a new alternative functional food for health-concerned consumers because it could be a promising source of tryptophan, phenolics and flavonoids. Moreover, the tea extracts also had antioxidative and anti-AChE activities

    Effect of Germination and Illumination on Melatonin and Its Metabolites, Phenolic Content, and Antioxidant Activity in Mung Bean Sprouts

    No full text
    Mung bean (Vigna radiata L.) sprouts are increasingly consumed and have become part of a healthy diet. The sprouts are composed of proteins, carbohydrates, and biochemical compounds. During germination, the phytochemical compounds are significantly elevated, especially under stress conditions such as salinity, drought, extreme temperature, and illumination. The present study examined the effects of light and germination time on the bioactive compounds in mung bean sprout extracts. Mung bean seeds were sprouted under different light exposure conditions, and the phytochemical composition and antioxidant activity of sprout extracts were determined compared to seeds. The results show that tryptophan sharply decreased during germination. On the contrary, melatonin, polyphenols, and total phenolic content (TPC) were elevated with increased germination time, correlated with increased antioxidant activity. Sprouts germinated in the dark presented higher levels of melatonin and TPC compared with those germinated under 12 h light exposure (3.6- and 1.5-fold, respectively). In conclusion, germination can enhance valuable phytochemicals and antioxidant activity of mung bean sprouts. Mung bean sprouts may be a good alternative functional food for promoting human health

    Pharmacological effects of Chatuphalatika in hyperuricemia of gout

    No full text
    Context: Chatuphalatika (CTPT), is a Thai herbal formulation mixture of Phyllanthus emblica Linn. (Euphorbiaceae), Terminalia belerica Linn. (Combretaceae), T. chebula and the fruit of T. arjuna (Roxb.) Wight & Arn. CTPT is considered to exert anti-inflammatory and antihyperuricemic effects, but there have been no reports to demonstrate these pharmacological effects in a quantitative manner. Objectives: To investigate the antioxidative, anti-inflammatory and antihyperuricemic effects of CTPT. Materials and methods: Antioxidant activities of CTPT extracts were measured in vitro by DPPH, ABTS and FRAP assays, and anti-inflammatory effect by measuring inflammatory mediator production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages. The mechanism of the hypouricemic effect was investigated using oxonate-induced hyperuricemic ddY mice treated with oral administrations of CTPT at 250, 500 and 1000 mg/kg. Results: Antioxidant activities of CTPT measured by ABTS and FRAP assays were 1.35 g TEAC/g extract and 10.3 mmol/100 g extract, respectively. IC50 for the inhibition of DPPH radical was 13.8 µg/mL. CTPT (10 µg/mL) significantly downregulated the mRNA expression of TNF-α and iNOS in RAW 264.7 cells. Lineweaver–Burk analysis of the enzyme kinetics showed that CTPT inhibited xanthine oxidase (XOD) activity in a noncompetitive manner with the Ki of 576.9 µg/mL. Oral administration of CTPT (1000 mg/kg) significantly suppressed uric acid production by inhibiting hepatic XOD activity, and decreased plasma uric acid levels in hyperuricemic mice by approximately 40% (p < 0.05). Conclusions: This study demonstrated for the first time the antioxidative, anti-inflammatory and antihyperuricemic effects of CTPT in vivo and in vitro, suggesting a possibility of using CTPT for the treatment of hyperuricemia in gout
    corecore