104 research outputs found

    Magnon Bose-Einstein condensation at inhomogeneous conditions

    Get PDF
    The Spin Supercurrent and Bose-Einstein condensation of magnons, similar to an atomic BEC, was discovered in superfluid 3He-B, which is characterized by absolute purity. Later this phenomena were observed in a few magnetically ordered materials with different types of impurities. In this article we will review the properties of magnon BEC in a presence of impurities and defects. © Published under licence by IOP Publishing Ltd

    Random anisotropy disorder in superfluid 3He-A in aerogel

    Full text link
    The anisotropic superfluid 3He-A in aerogel provides an interesting example of a system with continuous symmetry in the presence of random anisotropy disorder. Recent NMR experiments allow us to discuss two regimes of the orientational disorder, which have different NMR properties. One of them, the (s)-state, is identified as the pure Larkin-Imry-Ma state. The structure of another state, the (f)-state, is not very clear: probably it is the Larkin-Imry-Ma state contaminated by the network of the topological defects pinned by aerogel.Comment: JETP Lett. style, 6 pages, no figures, discussion extended, references added, version to be published in JETP Letter

    Nuclear magnetic relaxation induced by the relaxation of electron spins

    Get PDF
    © 2017, Pleiades Publishing, Inc.A physical mechanism responsible for the relaxation of nuclear spins coupled by the hyperfine interaction to relaxed electron spins in materials with spin ordering is proposed. The rate of such induced nuclear spin relaxation is proportional to the dynamic shift of the nuclear magnetic resonance (NMR) frequency. Therefore, its maximum effect on the NMR signal should be expected in the case of nuclear spin waves existing in the system. Our estimates demonstrate that the induced relaxation can be much more efficient than that occurring due to the Bloch mechanism. Moreover, there is a qualitative difference between the induced and Bloch relaxations. The dynamics of nuclear spin sublattices under conditions of the induced relaxation is reduced to the rotation of m1 and m2 vectors without any changes in their lengths (m12(t) = m22(t) = m02(t)= const). This means that the excitation of NMR signals by the resonant magnetic field does not change the temperature Tn of the nuclear spin system. This is a manifestation of the qualitative difference between the induced and Bloch relaxations. Indeed, for the latter, the increase in Tn accompanying the saturation of NMR signals is the dominant effect

    Creation of Kink and Antikink Pairs Forced By Radiation

    Full text link
    The interaction between kink and radiation in nonlinear one-dimensional real scalar field is investigated. The process of discrete vibrational mode excitation in ϕ4\phi^4 model is considered. The role of this oscillations in creation of kink and antikink is discussed. Numerical results are presented as well as some attempts of analytical explanations. An intriguing fractal structure in parameter space dividing regions with creation and without is also presented

    Boojums in Rotating Two-Component Bose-Einstein Condensates

    Full text link
    A boojum is a topological defect that can form only on the surface of an ordered medium such as superfluid 3^3He and liquid crystals. We study theoretically boojums appearing between two phases with different vortex structures in two-component BECs where the intracomponent interaction is repulsive in one phase and attractive in the other. The detailed structure of the boojums is revealed by investigating its density distribution, effective superflow vorticity and pseudospin texture.Comment: 4 pages, 4 figure

    Double magnetic resonance in MnCO3

    Get PDF
    © Kazan Federal University (KFU). Results of experiments on MnCO3 investigations by double magnetic resonance are presented. Additional mode of oscillation has been observed in a created Bose-Einstein condensation of magnons state in MnCO3. The properties of observed signals are similar to Goldstone modes

    Glass state of superfluid 3He-A in aerogel

    Full text link
    Glass states formed in the superfluid 3^3He confined in aerogel are discussed. If the short range order corresponds to the A-phase state, the glass state is nonsuperfluid in the long wave length limit. The superfluidity can be restored by application of a small mass current. Transitions between the superfluid and nonsuperfluid glass states can be triggered by small magnetic field and by the change of the tipping angle of magnetization in NMR experiments.Comment: 6 pages, LaTeX file, no figures, submitted to JETP Letter

    Nonlinear FMR spectra in yttrium iron garnet

    Get PDF
    © Kazan Federal University (KFU). Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR) spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons
    corecore