7,949 research outputs found

    Cosmological backreaction of a quantized massless scalar field

    Full text link
    We consider the backreaction problem of a quantized minimally coupled massless scalar field in cosmology. The adiabatically regularized stress-energy tensor in a general Friedmann-Robertson-Walker background is approximately evaluated by using the fact that subhorizon modes evolve adiabatically and superhorizon modes are frozen. The vacuum energy density is verified to obey a new first order differential equation depending on a dimensionless parameter of order unity, which calibrates subhorizon/superhorizon division. We check the validity of the approximation by calculating the corresponding vacuum energy densities in fixed backgrounds, which are shown to agree with the known results in de Sitter space and space-times undergoing power law expansions. We then apply our findings to slow-roll inflationary models. Although backreaction effects are found to be negligible during the near exponential expansion, the vacuum energy density generated during this period might be important at later stages since it decreases slower than radiation or dust.Comment: 20 pages, 2 figures, v2: comments and a reference added, to appear in JCA

    Fluctuation effects in disordered Peierls systems

    Get PDF
    We review the density of states and related quantities of quasi one-dimensional disordered Peierls systems in which fluctuation effects of a backscattering potential play a crucial role. The low-energy behavior of non-interacting fermions which are subject to a static random backscattering potential will be described by the fluctuating gap model (FGM). Recently, the FGM has also been used to explain the pseudogap phenomenon in high-TcT_c superconductors. After an elementary introduction to the FGM in the context of commensurate and incommensurate Peierls chains, we develop a non-perturbative method which allows for a simultaneous calculation of the density of states (DOS) and the inverse localization length. First, we recover all known results in the limits of zero and infinite correlation lengths of the random potential. Then, we attack the problem of finite correlation lengths. While a complex order parameter, which describes incommensurate Peierls chains, leads to a suppression of the DOS, i.e. a pseudogap, the DOS exhibits a singularity at the Fermi energy if the order parameter is real and therefore refers to a commensurate system. We confirm these results by calculating the DOS and the inverse localization length for finite correlation lengths and Gaussian statistics of the backscattering potential with unprecedented accuracy numerically. Finally, we consider the case of classical phase fluctuations which apply to low temperatures where amplitude fluctuations are frozen out. In this physically important regime, which is also characterized by finite correlation lengths, we present analytic results for the DOS, the inverse localization length, the specific heat, and the Pauli susceptibility.Comment: 60 pages, 16 figure

    Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California

    Get PDF
    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field

    Novel Modifications of Parallel Jacobi Algorithms

    Get PDF
    We describe two main classes of one-sided trigonometric and hyperbolic Jacobi-type algorithms for computing eigenvalues and eigenvectors of Hermitian matrices. These types of algorithms exhibit significant advantages over many other eigenvalue algorithms. If the matrices permit, both types of algorithms compute the eigenvalues and eigenvectors with high relative accuracy. We present novel parallelization techniques for both trigonometric and hyperbolic classes of algorithms, as well as some new ideas on how pivoting in each cycle of the algorithm can improve the speed of the parallel one-sided algorithms. These parallelization approaches are applicable to both distributed-memory and shared-memory machines. The numerical testing performed indicates that the hyperbolic algorithms may be superior to the trigonometric ones, although, in theory, the latter seem more natural.Comment: Accepted for publication in Numerical Algorithm

    Systems and methods for supplemental weather information presentation on a display

    Get PDF
    An embodiment of the supplemental weather display system presents supplemental weather information on a display in a craft. An exemplary embodiment receives the supplemental weather information from a remote source, determines a location of the supplemental weather information relative to the craft, receives weather information from an on-board radar system, and integrates the supplemental weather information with the weather information received from the on-board radar system

    Chiarella: The Need for Equal Access under Section 10(b)

    Get PDF
    This Article critiques the Supreme Court\u27s decision in United States v. Chiarella, and suggests that the Court should have held that Chiarella\u27s purchases of securities on the basis of nonpublic material market information constituted fraud in violation of the Securities Exchange Act. The author argues that a rule of law should have been established that a person who possesses nonpublic material market information and engages in purchases or sales of securities on the basis of that information, without disclosing the information to the investing public, violates Section 10(b) and Rule 10b-5. The author further argues that the only exception should be for the person who is fulfilling an essential market function or who is a tender of feror. The author concludes that the United States Supreme Court erred in reversing the court of appeals
    corecore