35 research outputs found

    Rudder Gap Flow Control for Cavitation Suppression

    Full text link
    For the suppression of rudder cavitation, especially within and around the gap between the stationary and movable parts, flow control devices were developed. In the present study, both experimental and computational analyses of the flow control devices were carried out. The new rudder system is equipped with cam devices, which effectively close the gap between the stationary horn/pintle and movable flaps. Model scale experiments of surface pressure measurements, flow field visualization near the gap using PIV, and cavitation behavior observation were conducted in a cavitation tunnel. The experiments were simulated using a computational fluid dynamics tool and the results are compared for validation. It is confirmed that the flow control devices effectively suppresses the rudder gap cavitation and, at the same time, augments lifthttp://deepblue.lib.umich.edu/bitstream/2027.42/84266/1/CAV2009-final70.pd

    Prevalence of Anti-Ganglioside Antibodies and Their Clinical Correlates with Guillain-Barre Syndrome in Korea: A Nationwide Multicenter Study

    Get PDF
    Background and Purpose No previous studies have investigated the relationship between various anti-ganglioside antibodies and the clinical characteristics of Guillain-Barre syndrome (GBS) in Korea. The aim of this study was to determine the prevalence and types of anti-ganglioside antibodies in Korean GBS patients, and to identify their clinical significance. Methods Serum was collected from patients during the acute phase of GBS at 20 university-based hospitals in Korea. The clinical and laboratory findings were reviewed and compared with the detected types of anti-ganglioside antibody. Results Among 119 patients, 60 were positive for immunoglobulin G (IgG) or immunoglobulin M antibodies against any type of ganglioside (50%). The most frequent type was IgG anti-GM1 antibody (47%), followed by IgG anti-GT1a (38%), IgG anti-GD1a (25%), and IgG anti-GQ1b (8%) antibodies. Anti-GM1-antibody positivity was strongly correlated with the presence of preceding gastrointestinal infection, absence of sensory symptoms or signs, and absence of cranial nerve involvement. Patients with anti-GD1a antibody were younger, predominantly male, and had more facial nerve involvement than the antibody-negative group. Anti-GT1a-antibody positivity was more frequently associated with bulbar weakness and was highly associated with ophthalmoplegia when coupled with the coexisting anti-GQ1b antibody. Despite the presence of clinical features of acute motor axonal neuropathy (AMAN), 68% of anti-GM1- or anti-GD1a-antibody-positive cases of GBS were diagnosed with acute inflammatory demyelinating polyradiculoneuropathy (AMP) by a single electrophysiological study. Conclusions Anti-ganglioside antibodies were frequently found in the serum of Korean GBS patients, and each antibody was correlated strongly with the various clinical manifestations. Nevertheless, without an anti-ganglioside antibody assay, in Korea AMAN is frequently misdiagnosed as AIDP by single electrophysiological studies.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000004487/14SEQ:14PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000004487ADJUST_YN:YEMP_ID:A075641DEPT_CD:801CITE_RATE:1.807FILENAME:kimjk-anti ganlioside ab-gbs-j clin neurol-2014-10(2)94.pdfDEPT_NM:의학과SCOPUS_YN:YCONFIRM:

    Reflection of irregular waves from perforated-wall caisson breakwaters

    No full text
    author's final versionAn analytical model has been developed that predicts the reflection of irregular waves normally incident upon a perforated-wall caisson breakwater. To examine the predictability of the developed model, laboratory experiments have been conducted for the reflection of irregular waves of various significant wave heights and periods impinging upon breakwaters having various wave chamber widths. For frequency-averaged reflection coefficients, though the overall agreement is fairly good between measurement and calculation, the model somewhat over-predicts the reflection coefficients at larger values, and under-predicts at smaller values. The model also underestimates the energy loss coefficients as wave reflection becomes larger. These differences occur because the model neglects the evanescent waves near the breakwater, which increase the energy loss at the perforated wall. The frequency-averaged reflection coefficient shows a minimum when the wave chamber width is approximately 0.2 times the significant wavelength, and it decreases with increasing wave steepness. Finally it is shown that the reflection of irregular waves from a perforated-wall caisson breakwater depends on the wave frequency, so that the reflected wave spectrum shows a frequency dependent oscillatory behavior
    corecore