5 research outputs found

    Beam-Spin Asymmetry Σ for Σ⁻ Hyperon Photoproduction off the Neutron

    Get PDF
    We report a new measurement of the beam-spin asymmetry, Σ, for the →n → K+Σ− reaction using quasi-free neutrons in a liquid-deuterium target. The new dataset includes data at previously unmeasured photon energy and angular ranges, thereby providing new constraints on partial wave analyses used to extract properties of the excited nucleon states. The experimental data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall B of the Thomas Jefferson National Accelerator Facility (JLab). The CLAS detector measured reaction products from a liquid-deuterium target produced by an energy-tagged, linearly polarised photon beam with energies in the range 1.1 to 2.3 GeV. Predictions from an isobar model indicate strong sensitivity to N(1720)3/2+, Δ(1900)1/2−, and N(1895)1/2−, which corroborates results from a recent combined analysis of all KΣ channels. When our data are incorporated in the fits of partial-wave analyses, one observes significant changes in -n couplings of resonances which have small branching ratios to the πN channel

    Polarized Structure Function σ\u3csub\u3eLT\u27\u3c/sub\u3e from ⁰p Electroproduction Data in the Resonance Region at 0.2 GeV² \u3c Q² \u3c 1.0 GeV²

    Get PDF
    The first results on the σLT′ structure function in exclusive π0p electroproduction at invariant masses of the final state of 1.5GeV \u3c W \u3c 1.8 GeV and in the range of photon virtualities 0.4 GeV2 \u3c Q2 \u3c 1.0 GeV2 were obtained from data on beam spin asymmetries and differential cross sections measured with the CLAS detector at Jefferson Lab. The Legendre moments determined from the σLT′ structure function have demonstrated sensitivity to the contributions from the nucleon resonances in the second and third resonance regions. These new data on the beam spin asymmetries in π0p electroproduction extend the opportunities for the extraction of the nucleon resonance electro-excitation amplitudes in the mass range above 1.6 GeV

    Improved Λp Elastic Scattering Cross Sections Between 0.9 and 2.0 GeV/c as a Main Ingredient of the Neutron Star Equation of State

    Get PDF
    Strange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state. Yet, compared to other elastic scattering processes, there is very little data on Λ-N scattering. This experiment utilized the CEBAF Large Acceptance Spectrometer (CLAS) detector to study the Λp→Λp elastic scattering cross section in the incident Λ momentum range 0.9-2.0  GeV/c. These are the first data on this reaction since the 1970s. The new cross sections have significantly better accuracy and precision than the existing world data, and the techniques developed here can also be used in future experiments

    Measurement of Deeply Virtual Compton Scattering Off \u3csup\u3e4\u3c/sup\u3eHe with the CEBAF Large Acceptance Spectrometer at Jefferson Lab

    Get PDF
    We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off 4He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized 4He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling 4He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the coherent (e4He→e′4Heγ′) beam spin asymmetries compared to those observed on the free proton, while the incoherent (e4He→ e′p′γ′X′) asymmetries exhibit a 30% suppression. From the coherent data, we were able to extract, in a model-independent way, the real and imaginary parts of the only 4He Compton form factor, HA, leading the way toward 3D imaging of the partonic structure of nuclei

    Photoproduction of the f2(1270)f_2(1270) meson using the CLAS detector

    No full text
    The quark structure of the f2(1270)f_2(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qqˉq\bar{q}) resonance with quantum numbers JPC=2++J^{PC} = 2^{++}. Recently, it was proposed that the f2(1270)f_2(1270) is a molecular state made from the attractive interaction of two ρ\rho-mesons. Such a state would be expected to decay strongly to final states with charged pions, due to the dominant decay ρπ+π\rho \to \pi^+ \pi^-, whereas decay to two neutral pions would likely be suppressed. Here, we measure for the first time the reaction γpπ0π0p\gamma p \to \pi^0 \pi^0 p, using the CLAS detector at Jefferson Lab for incident beam energies between 3.6-5.4~GeV. Differential cross sections, dσ/dtd\sigma / dt, for f2(1270)f_2(1270) photoproduction are extracted with good precision, due to low backgrounds, and are compared with theoretical calculations.The quark structure of the f2(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq¯) resonance with quantum numbers JPC=2++. Recently, it was proposed that the f2(1270) is a molecular state made from the attractive interaction of two ρ mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay ρ→π+π-, whereas decay to two neutral pions would likely be suppressed. Here, we measure for the first time the reaction γp→π0π0p, using the CEBAF Large Acceptance Spectrometer detector at Jefferson Lab for incident beam energies between 3.6 and 5.4 GeV. Differential cross sections, dσ/dt, for f2(1270) photoproduction are extracted with good precision due to low backgrounds and are compared to theoretical calculations
    corecore