11 research outputs found

    Deep Virtual Pion Pair Production

    Get PDF
    This experiment investigates the deep virtual production of both σ− and ρ− mesons, with a particular focus on the microscopic structure of the σ mesons. While the ρ meson is an ordinary qq¯ pair, the σ meson is composed of not only the typical qq¯ pair, making it a topic of controversy for nearly six decades. Although the existence of the σ− meson is now well established, its microscopic structure remains poorly understood. The primary objective of this thesis is to contribute to the understanding of the σ meson by analyzing its deep virtual production. The main focus of this study was on the ep → e ′p ′π +π − reaction, which is a crucial process for investigating both the σ− and ρ− mesons. Specifically, this reaction is sensitive to the pure glue component of the σ− meson’s wave function near the threshold in the ππ− system. In order to separate the σ− and ρ− meson channels, we analyzed the angular distribution in the ππ rest frame. By focusing on this reaction and employing this technique, we aimed to gain a better understanding of the structure of both the σ− and ρ− mesons. The model has developed according to Lehmann-Dronke to understand the σ− and ρ− mesons separately. To conduct our experiment, we chose to use the data from the Hall B CLAS12 “Run Group A” with an electron beam energy of 10.6 GeV incident on the LH2 target. The CLAS12 detector in Hall B has a large acceptance, making it an ideal choice for our study. By using this data, we were able to obtain accurate and reliable measurements of the ep → e ′p ′π +π − reaction and further our understanding of the σ− and ρ− mesons

    Photoproduction of the f₂(1270) Meson Using the CLAS Detector

    Get PDF
    The quark structure of the f2(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq⁻) resonance with quantum numbers JPC = 2++. Recently, it was proposed that the f2(1270) is a molecular state made from the attractive interaction of two mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay → π+π-, whereas decay to two neutral pions would likely be suppressed. Here, we measure for the first time the reaction p -\u3e π0π0p, using the CEBAF Large Acceptance Spectrometer detector at Jefferson Lab for incident beam energies between 3.6 and 5.4 GeV. Differential cross sections, dσ/dt, for f2(1270) photoproduction are extracted with good precision due to low backgrounds and are compared to theoretical calculations

    Beam-Spin Asymmetry Σ for Σ⁻ Hyperon Photoproduction off the Neutron

    Get PDF
    We report a new measurement of the beam-spin asymmetry, Σ, for the →n → K+Σ− reaction using quasi-free neutrons in a liquid-deuterium target. The new dataset includes data at previously unmeasured photon energy and angular ranges, thereby providing new constraints on partial wave analyses used to extract properties of the excited nucleon states. The experimental data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall B of the Thomas Jefferson National Accelerator Facility (JLab). The CLAS detector measured reaction products from a liquid-deuterium target produced by an energy-tagged, linearly polarised photon beam with energies in the range 1.1 to 2.3 GeV. Predictions from an isobar model indicate strong sensitivity to N(1720)3/2+, Δ(1900)1/2−, and N(1895)1/2−, which corroborates results from a recent combined analysis of all KΣ channels. When our data are incorporated in the fits of partial-wave analyses, one observes significant changes in -n couplings of resonances which have small branching ratios to the πN channel

    Observation of Beam Spin Asymmetries in the Process ep → e\u27π⁺π⁻ X with CLAS 12

    Get PDF
    The observation of beam spin asymmetries in two-pion production in semi-inclusive deep inelastic scattering off an unpolarized proton target is reported. The data presented here were taken in the fall of 2018 with the CLAS12 spectrometer using a 10.6 GeV longitudinally spin-polarized electron beam delivered by CEBAF at JLab. The measured asymmetries provide the first opportunity to extract the parton distribution function e(x), which provides information about the interaction between gluons and quarks, in a collinear framework that offers cleaner access than previous measurements. The asymmetries also constitute the first ever signal sensitive to the helicity-dependent two-pion fragmentation function G⊥1. A clear sign change is observed around the ρ mass that appears in model calculations and is indicative of the dependence of the produced pions on the helicity of the fragmenting quark

    Polarized Structure Function σ\u3csub\u3eLT\u27\u3c/sub\u3e from ⁰p Electroproduction Data in the Resonance Region at 0.2 GeV² \u3c Q² \u3c 1.0 GeV²

    Get PDF
    The first results on the σLT′ structure function in exclusive π0p electroproduction at invariant masses of the final state of 1.5GeV \u3c W \u3c 1.8 GeV and in the range of photon virtualities 0.4 GeV2 \u3c Q2 \u3c 1.0 GeV2 were obtained from data on beam spin asymmetries and differential cross sections measured with the CLAS detector at Jefferson Lab. The Legendre moments determined from the σLT′ structure function have demonstrated sensitivity to the contributions from the nucleon resonances in the second and third resonance regions. These new data on the beam spin asymmetries in π0p electroproduction extend the opportunities for the extraction of the nucleon resonance electro-excitation amplitudes in the mass range above 1.6 GeV

    Improved Λp Elastic Scattering Cross Sections Between 0.9 and 2.0 GeV/c as a Main Ingredient of the Neutron Star Equation of State

    Get PDF
    Strange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state. Yet, compared to other elastic scattering processes, there is very little data on Λ-N scattering. This experiment utilized the CEBAF Large Acceptance Spectrometer (CLAS) detector to study the Λp→Λp elastic scattering cross section in the incident Λ momentum range 0.9-2.0  GeV/c. These are the first data on this reaction since the 1970s. The new cross sections have significantly better accuracy and precision than the existing world data, and the techniques developed here can also be used in future experiments

    Deep Exclusive Electroproduction of \u3ci\u3eπ\u3c/i\u3e\u3csup\u3e0\u3c/sup\u3e at High \u3ci\u3eQ\u3c/i\u3e\u3csup\u3e2\u3c/sup\u3e in the Quark Valence Regime

    Get PDF
    We report measurements of the exclusive neutral pion electroproduction cross section off protons at large values of B (0.36, 0.48, and 0.60) and Q2 (3.1 to 8.4  GeV2) obtained from Jefferson Lab Hall A experiment E12-06-014. The corresponding structure functions dσT/dt+εdσL/dt, dσTT/dt, dσLT/dt, and dσLT′/dt are extracted as a function of the proton momentum transfer t−tmin. The results suggest the amplitude for transversely polarized virtual photons continues to dominate the cross section throughout this kinematic range. The data are well described by calculations based on transversity generalized parton distributions coupled to a helicity flip distribution amplitude of the pion, thus providing a unique way to probe the structure of the nucleon

    Multidimensional, High Precision Measurements of Beam Single Spin Asymmetries in Semi-Inclusive ⁺ Electroproduction off Protons in the Valence Region

    Get PDF
    High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π+ SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q2 ranging from 1–7  GeV2. In particular, the structure function ratio FsinϕLU/FUU has been determined, where FsinϕLU is a twist-3 quantity that can reveal novel aspects of emergent hadron mass and quark-gluon correlations within the nucleon. The data’s impact on the evolving understanding of the underlying reaction mechanisms and their kinematic variation is explored using theoretical models for the different contributing transverse momentum dependent parton distribution functions

    Measurement of Charged-Pion Production in Deep-Inelastic Scattering Off Nuclei with the CLAS Detector

    Get PDF
    Background: Energetic quarks in nuclear deep-inelastic scattering propagate through the nuclear medium. Processes that are believed to occur inside nuclei include quark energy loss through medium-stimulated gluon bremsstrahlung and intranuclear interactions of forming hadrons. More data are required to gain a more complete understanding of these effects. Purpose: To test the theoretical models of parton transport and hadron formation, we compared their predictions for the nuclear and kinematic dependence of pion production in nuclei. Methods: We have measured charged-pion production in semi-inclusive deep-inelastic scattering off D, C, Fe, and Pb using the CLAS detector and the CEBAF 5.014-GeV electron beam. We report results on the nuclear-to-deuterium multiplicity ratio for π+ and π− as a function of energy transfer, four-momentum transfer, and pion energy fraction or transverse momentum—the first three-dimensional study of its kind. Results: The π+ multiplicity ratio is found to depend strongly on the pion fractional energy z and reaches minimum values of 0.67 ± 0.03, 0.43 ± 0.02, and 0.27 ± 0.01 for the C, Fe, and Pb targets, respectively. The z dependencies of the multiplicity ratios for π+ and π− are equal within uncertainties for C and Fe targets but show differences at the level of 10% for the Pb-target data. The results are qualitatively described by the GiBUU transport model, as well as with a model based on hadron absorption, but are in tension with calculations based on nuclear fragmentation functions. Conclusions: These precise results will strongly constrain the kinematic and flavor dependence of nuclear effects in hadron production, probing an unexplored kinematic region. They will help to reveal how the nucleus reacts to a fast quark, thereby shedding light on its color structure and transport properties and on the mechanisms of the hadronization process

    Measurement of Deeply Virtual Compton Scattering Off \u3csup\u3e4\u3c/sup\u3eHe with the CEBAF Large Acceptance Spectrometer at Jefferson Lab

    Get PDF
    We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off 4He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized 4He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling 4He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the coherent (e4He→e′4Heγ′) beam spin asymmetries compared to those observed on the free proton, while the incoherent (e4He→ e′p′γ′X′) asymmetries exhibit a 30% suppression. From the coherent data, we were able to extract, in a model-independent way, the real and imaginary parts of the only 4He Compton form factor, HA, leading the way toward 3D imaging of the partonic structure of nuclei
    corecore