197 research outputs found

    Reply to 'Comment on "Extending Hirshfeld-I to bulk and periodic materials" '

    Get PDF
    The issues raised in the comment by T.A. Manz are addressed through the presentation of calculated atomic charges for NaF, NaCl, MgO, SrTiO3_3 and La2_2Ce2_2O7_7, using our previously presented method for calculating Hirshfeld-I charges in Solids [J. Comput. Chem.. doi: 10.1002/jcc.23088]. It is shown that the use of pseudo-valence charges is sufficient to retrieve the full all-electron Hirshfeld-I charges to good accuracy. Furthermore, we present timing results of different systems, containing up to over 200200 atoms, underlining the relatively low cost for large systems. A number of theoretical issues is formulated, pointing out mainly that care must be taken when deriving new atoms in molecules methods based on "expectations" for atomic charges.Comment: 7 pages, 2 Tables, 2 figure

    Extending Hirshfeld-I to bulk and periodic materials

    Get PDF
    In this work, a method is described to extend the iterative Hirshfeld-I method, generally used for molecules, to periodic systems. The implementation makes use of precalculated pseudo-potential based charge density distributions, and it is shown that high quality results are obtained for both molecules and solids, such as ceria, diamond, and graphite. The use of such grids makes the implementation independent of the solid state or quantum chemical code used for studying the system. The extension described here allows for easy calculation of atomic charges and charge transfer in periodic and bulk systems.Comment: 11 pages, 4 Tables, 5 Figures, pre-referee draft only, much extended post referee version only available at publishe

    Tuning of CeO2_2 buffer layers for coated superconductors through doping

    Full text link
    The appearance of microcracks in CeO2_2 buffer layers, as used in buffer layer architectures for coated superconductors, indicates the presence of stress between this buffer layer and the substrate. This stress can originate from the differences in thermal expansion or differences in lattice parameters between the CeO2_2 buffer layer and the substrate. In this article, we study, by means of \textit{ab initio} density functional theory calculations, the influence of group IV doping elements on the lattice parameter and bulk modulus of CeO2_2. Vegard's law behavior is found for the lattice parameter in systems without oxygen vacancies, and the Shannon crystal radii for the doping elements are retrieved from the lattice expansions. We show that the lattice parameter of the doped CeO2_2 can be matched to that of the La2_2Zr2_2O7_7 coated NiW substrate substrate for dopant concentrations of about 5%5\%, and that bulk modulus matching is either not possible or would require extreme doping concentrations.Comment: 5 pages, 1 table, 2 figures, EMRS 2011 Fall meeting symposium on Stress, structure and stoichiometry effects on nanomaterial

    Efficient simulation of moire materials using the density matrix renormalization group

    Full text link
    We present an infinite density-matrix renormalization group (DMRG) study of an interacting continuum model of twisted bilayer graphene (tBLG) near the magic angle. Because of the long-range Coulomb interaction and the large number of orbital degrees of freedom, tBLG is difficult to study with standard DMRG techniques -- even constructing and storing the Hamiltonian already poses a major challenge. To overcome these difficulties, we use a recently developed compression procedure to obtain a matrix product operator representation of the interacting tBLG Hamiltonian which we show is both efficient and accurate even when including the spin, valley and orbital degrees of freedom. To benchmark our approach, we focus mainly on the spinless, single-valley version of the problem where, at half-filling, we find that the ground state is a nematic semimetal. Remarkably, we find that the ground state is essentially a k-space Slater determinant, so that Hartree-Fock and DMRG give virtually identical results for this problem. Our results show that the effects of long-range interactions in magic angle graphene can be efficiently simulated with DMRG, and opens up a new route for numerically studying strong correlation physics in spinful, two-valley tBLG, and other moire materials, in future work.Comment: corrected a typo in arxiv author lis

    Strain-induced quantum phase transitions in magic angle graphene

    Full text link
    We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group calculations, we find that small strain values (ϵ0.10.2%\epsilon \sim 0.1 - 0.2 \%) drive a zero-temperature phase transition between the symmetry-broken Kramers intervalley-coherent insulator and a nematic semi-metal. The critical strain lies within the range of experimentally observed strain values, and we therefore predict that strain is at least partly responsible for the sample-dependent experimental observations

    Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions

    Get PDF
    A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.Fil: Van Raemdonck, Mario. Ghent University; BélgicaFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Poelmans, Ward. Ghent University; BélgicaFil: De Baerdemacker, Stijn. Ghent University; BélgicaFil: Torre, Alicia. Universidad del País Vasco; EspañaFil: Lain, Luis. Universidad del País Vasco; EspañaFil: Massaccesi, Gustavo Ernesto. Universidad de Barcelona. Facultad de Física. Departamento de Física Fomental; EspañaFil: Van Neck, D.. Ghent University; BélgicaFil: Bultinck, P.. Ghent University; Bélgic
    corecore