60 research outputs found
Effects of nutrient enrichment on seagrass population dynamics: evidence and synthesis from the biomass-density relationships
The available data from experimental and descriptive studies on seagrass biomass and density responses to nutrient enrichment were analysed to assess the intraspecific mechanisms operating within seagrass populations and whether biomass-density relationships can provide relevant metrics for monitoring seagrasses. The response of shoot biomass and density to nutrient enrichment was dependent on the type of study; the short-term positive response of biomass and density in experimental studies reveals context-specific nutrient limitation of seagrasses. The long-term negative response of descriptive studies probably results from ecosystem-scale events related to nutrient enrichment such as increased turbidity, algal blooms, epiphyte loads and anoxia. Most seagrass species analysed lie in the nonthinning part of the theoretical biomass-density curves. A simultaneous increase in biomass and decrease in density, evidence of self-thinning, were only observed in 4 of 28 studies. The analysis of both the static and the dynamic biomass-density relationships revealed that the slopes increase under nutrient enrichment. Surprisingly, the species-specific slopes (log B-log D) were higher than one, revealing that the B/D ratio, that is, the average shoot biomass, increases with density in all seagrass species analysed. Nutrient enrichment further enhanced this effect as biomass-density slopes increased to even higher values. The main drivers behind the increasing biomass-density slopes under nutrient enrichment were the increase in shoot biomass at densities above a species-specific threshold and/or its decrease below that threshold. Synthesis. Contrasting short- and long-term responses of both biomass and density of seagrasses to nutrient enrichment suggest that the former, positive ones result from nutrient limitation, whereas the later, negative ones are mediated by whole ecosystem responses. In general, shoot biomass of seagrasses increases with density, and nutrient enrichment enhances this effect. Experimental testing of facilitation processes related to clonal integration in seagrasses needs to be done to reveal whether they determine the low incidence of self-thinning and the intriguing biomass-density relationships of seagrass species. The increasing slopes and decreasing intercepts of the species-specific dynamic biomass-density relationships of seagrasses and the decreasing coefficients of variation of both biomass and density constitute relevant, easy-to-collect metrics that may be used in environmental monitoring.EU project ECO-LAGUNES [SOE1/P2/F153]; COST Action [ES0906]; FCT [SFRH/BPD/37368/2007, SFRH/BPD/75307/2010]; NSERC PGSD; Killam Trustinfo:eu-repo/semantics/publishedVersio
Riboflavin Supplementation in Patients with Crohn's Disease [the RISE-UP study]
Background and Aims: Crohn's disease [CD] is characterised by chronic intestinal inflammation and dysbiosis in the gut. Riboflavin [vitamin B2] has anti-inflammatory, antioxidant and microbiome-modulatory properties. Here, we analysed the effect of riboflavin on oxidative stress, markers of inflammation, clinical symptoms, and faecal microbiome in patients with CD. Methods: In this prospective clinical intervention study, patients received 100 mg riboflavin [DSM, Nutritional Products Ltd] daily for 3 weeks. Clinical disease activity [Harvey-Bradshaw Index: HBI], serum biomarkers of inflammation and redox status [plasma free thiols], and faecal microbiome taxonomical composition and functionality [fluorescent in situ hybridisation: FISH; and metagenomic shotgun sequencing: MGS], were analysed before and after riboflavin intervention. Results: In total, 70 patients with CD with varying disease activity were included. Riboflavin supplementation significantly decreased serum levels of inflammatory markers. In patients with low faecal calprotectin [FC] levels, IL-2 decreased, and in patients with high FC levels, C-reactive protein [CRP] was reduced and free thiols significantly increased after supplementation. Moreover, HBI was significantly decreased by riboflavin supplementation. Riboflavin supplementation led to decreased Enterobacteriaceae in patients with low FC levels as determined by FISH; however, MGS analysis showed no effects on diversity, taxonomy, or metabolic pathways of the faecal microbiome. Conclusions: Three weeks of riboflavin supplementation resulted in a reduction in systemic oxidative stress, mixed anti-inflammatory effects, and a reduction in clinical symptoms [HBI]. FISH analysis showed decreased Enterobacteriaceae in patients with CD with low FC levels, though this was not observed in MGS analysis. Our data demonstrate that riboflavin supplementation has a number of anti-inflammatory and anti-oxidant effects in CD
Factors promoting health-related quality of life in people with rheumatic diseases: a 12 month longitudinal study
<p>Abstract</p> <p>Background</p> <p>Rheumatic diseases have a significant adverse impact on the individual from physical, mental and social aspects, resulting in a low health-related quality of life (HRQL). There is a lack of longitudinal studies on HRQL in people with rheumatic diseases that focus on factors promoting HRQL instead of risk factors. The aim of this study was to investigate the associations between suggested health promoting factors at baseline and outcome in HRQL at a 12 month follow-up in people with rheumatic diseases.</p> <p>Methods</p> <p>A longitudinal cohort study was conducted in 185 individuals with rheumatic diseases with questionnaires one week and 12 months after rehabilitation in a Swedish rheumatology clinic. HRQL was assessed by SF-36 together with suggested health factors. The associations between SF-36 subscales and the health factors were analysed by multivariable logistic regressions.</p> <p>Results</p> <p>Factors predicting better outcome in HRQL in one or several SF-36 subscales were being younger or middle-aged, feeling painless, having good sleep structure, feeling rested after sleep, performing low effort of exercise more than twice per week, having strong sense of coherence (SOC), emotional support and practical assistance, higher educational level and work capacity. The most important factors were having strong SOC, feeling rested after sleep, having work capacity, being younger or middle-aged, and having good sleep structure.</p> <p>Conclusions</p> <p>This study identified several factors that promoted a good outcome in HRQL to people with rheumatic diseases. These health factors could be important to address in clinical work with rheumatic diseases in order to optimise treatment strategies.</p
Non-pharmacological care for patients with generalized osteoarthritis: design of a randomized clinical trial
<p>Abstract</p> <p>Background</p> <p>Non-pharmacological treatment (NPT) is a useful treatment option in the management of hip or knee osteoarthritis. To our knowledge however, no studies have investigated the effect of NPT in patients with generalized osteoarthritis (GOA). The primary aim of this study is to compare the effectiveness of two currently existing health care programs with different intensity and mode of delivery on daily functioning in patients with GOA. The secondary objective is to compare the cost-effectiveness of both interventions.</p> <p>Methods/Design</p> <p>In this randomized, single blind, clinical trial with active controls, we aim to include 170 patients with GOA. The experimental intervention consist of six self-management group sessions provided by a multi-disciplinary team (occupational therapist, physiotherapist, dietician and specialized nurse). The active control group consists of two group sessions and four sessions by telephone, provided by a specialized nurse and physiotherapist. Both therapies last six weeks. Main study outcome is daily functioning during the first year after the treatment, assessed on the Health Assessment Questionnaire. Secondary outcomes are health related quality of life, specific complaints, fatigue, and costs. Illness cognitions, global perceived effect and self-efficacy, will also be assessed for a responder analysis. Outcome assessments are performed directly after the intervention, after 26 weeks and after 52 weeks.</p> <p>Discussion</p> <p>This article describes the design of a randomized, single blind, clinical trial with a one year follow up to compare the costs and effectiveness of two non-pharmacological interventions with different modes of delivery for patients with GOA.</p> <p>Trial registration</p> <p>Dutch Trial Register NTR2137</p
Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants
Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy
On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
- …