14 research outputs found
Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
Stain variation is a phenomenon observed when distinct pathology laboratories
stain tissue slides that exhibit similar but not identical color appearance.
Due to this color shift between laboratories, convolutional neural networks
(CNNs) trained with images from one lab often underperform on unseen images
from the other lab. Several techniques have been proposed to reduce the
generalization error, mainly grouped into two categories: stain color
augmentation and stain color normalization. The former simulates a wide variety
of realistic stain variations during training, producing stain-invariant CNNs.
The latter aims to match training and test color distributions in order to
reduce stain variation. For the first time, we compared some of these
techniques and quantified their effect on CNN classification performance using
a heterogeneous dataset of hematoxylin and eosin histopathology images from 4
organs and 9 pathology laboratories. Additionally, we propose a novel
unsupervised method to perform stain color normalization using a neural
network. Based on our experimental results, we provide practical guidelines on
how to use stain color augmentation and stain color normalization in future
computational pathology applications.Comment: Accepted in the Medical Image Analysis journa
Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps
Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under- and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments.Patient summaryThis mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories.</p
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: The PANDA challenge
Through a community-driven competition, the PANDA challenge provides a curated diverse dataset and a catalog of models for prostate cancer pathology, and represents a blueprint for evaluating AI algorithms in digital pathology.
Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge-the largest histopathology competition to date, joined by 1,290 developers-to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted kappa, 95% confidence interval (CI), 0.840-0.884) and 0.868 (95% CI, 0.835-0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.KWF Kankerbestrijding ; Netherlands Organization for Scientific Research (NWO) ; Swedish Research Council European Commission ; Swedish Cancer Society ; Swedish eScience Research Center ; Ake Wiberg Foundation ; Prostatacancerforbundet ; Academy of Finland ; Cancer Foundation Finland ; Google Incorporated ; MICCAI board challenge working group ; Verily Life Sciences ; EIT Health ; Karolinska Institutet ; MICCAI 2020 satellite event team ; ERAPerMe
El narcoperiodismo de GarcĂa Márquez: uma análise dos aspectos da narcoliteratura no livro-reportagem NotĂcia de um sequestro
Desde os anos 1970, a cobertura da mĂdia tradicional sobre o narcotráfico caracterizou-se pela superficialidade de suas narrativas cujo processo impossibilita a profundidade de análise. PorĂ©m, alguns repĂłrteres foram bem-sucedidos ao aproximar o narcotráfico e o jornalismo literário, rompendo com essa barreira limitante, principalmente, a partir da produção de livros-reportagem. O tema influenciou a literatura do continente (originando termos como narcoliteratura, narconarrativa e narcocultura), bem como o contexto do tráfico de drogas proporcionou a produção editorial de obras de nĂŁo ficção, a partir dos final dos anos 80, atingindo o ápice nos anos 90 e 2000. Desta forma, este artigo discute o papel do livro-reportagem para a produção cultural da narcoliteratura, a partir de uma análise de seus aspectos dentro da obra jornalĂstica NotĂcia de um sequestro (1996), de Gabriel GarcĂa Márquez. O artigo está apoiado nos conceitos de livro-reportagem, de Edvaldo Pereira Lima e nas discussões sobre narcocultura, de Omar RincĂłn e de Diana Palaversich
Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps
Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under-and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments. Patient summary: This mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories