4 research outputs found
Epstein-Barr Virus LMP2A Enhances B-Cell Responses In Vivo and In Vitro
Epstein-Barr virus (EBV) establishes latent infections in a significant percentage of the population. Latent membrane protein 2A (LMP2A) is an EBV protein expressed during latency that inhibits B-cell receptor signaling in lymphoblastoid cell lines. In the present study, we have utilized a transgenic mouse system in which LMP2A is expressed in B cells that are specific for hen egg lysozyme (E/HEL-Tg). To determine if LMP2A allows B cells to respond to antigen, E/HEL-Tg mice were immunized with hen egg lysozyme. E/HEL-Tg mice produced antibody in response to antigen, indicating that LMP2A allows B cells to respond to antigen. In addition, E/HEL-Tg mice produced more antibody and an increased percentage of plasma cells after immunization compared to HEL-Tg littermates, suggesting that LMP2A increased the antibody response in vivo. Finally, in vitro studies determined that LMP2A acts directly on the B cell to increase antibody production by augmenting the expansion and survival of the activated B cells, as well as increasing the percentage of plasma cells generated. Taken together, these data suggest that LMP2A enhances, not diminishes, B-cell-specific antibody responses in vivo and in vitro in the E/HEL-Tg system
Epstein-Barr Virus LMP2A Alters In Vivo and In Vitro Models of B-Cell Anergy, but Not Deletion, in Response to Autoantigen
A significant percentage of the population latently harbors Epstein-Barr virus (EBV) in B cells. One EBV-encoded protein, latent membrane protein 2A (LMP2A), is expressed in tissue culture models of EBV latent infection, in human infections, and in many of the EBV-associated proliferative disorders. LMP2A constitutively activates proteins involved in the B-cell receptor (BCR) signal transduction cascade and inhibits the antigen-induced activation of these proteins. In the present study, we investigated whether LMP2A alters B-cell receptor signaling in primary B cells in vivo and in vitro. LMP2A does not inhibit antigen-induced tolerance in response to strong stimuli in an in vivo tolerance model in which B cells are reactive to self-antigen. In contrast, LMP2A bypasses anergy induction in response to low levels of soluble hen egg lysozyme (HEL) both in vivo and in vitro as determined by the ability of LMP2A-expressing HEL-specific B cells to proliferate and induce NF-κB nuclear translocation after exposure to low levels of antigen. Furthermore, LMP2A induces NF-κB nuclear translocation independent of BCR cross-linking. Since NF-κB is required to bypass tolerance induction, this LMP2A-dependent NF-κB activation may complete the tolerogenic signal induced by low levels of soluble HEL. Overall, the findings suggest that LMP2A may not inhibit BCR-induced signals under all conditions as previously suggested by studies with EBV immortalized B cells