1,144 research outputs found

    A novel linear direct drive system for textile winding applications

    Get PDF
    The paper describes the specification, modelling, magnetic design, thermal characteristics and control of a novel, high acceleration (up to 82g) brushless PM linear actuator with Halbach array, for textile package winding applications. Experimental results demonstrate the realisation of the actuator and induced performance advantages afforded to the phase lead, closed-loop position control scheme

    Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras

    Full text link
    Polynomial-in-time dependent symmetries are analysed for polynomial-in-time dependent evolution equations. Graded Lie algebras, especially Virasoro algebras, are used to construct nonlinear variable-coefficient evolution equations, both in 1+1 dimensions and in 2+1 dimensions, which possess higher-degree polynomial-in-time dependent symmetries. The theory also provides a kind of new realisation of graded Lie algebras. Some illustrative examples are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge

    Transfer device for supermorbidly obese patients

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71881/1/j.1365-2044.2007.05388.x.pd

    Graded Symmetry Algebras of Time-Dependent Evolution Equations and Application to the Modified KP equations

    Full text link
    By starting from known graded Lie algebras, including Virasoro algebras, new kinds of time-dependent evolution equations are found possessing graded symmetry algebras. The modified KP equations are taken as an illustrative example: new modified KP equations with mm arbitrary time-dependent coefficients are obtained possessing symmetries involving mm arbitrary functions of time. A particular graded symmetry algebra for the modified KP equations is derived in this connection homomorphic to the Virasoro algebras.Comment: 19 pages, latex, to appear in J. Nonlinear Math. Phy

    Electron Beam Nano-Etching in Oxides, Fluorides, Metals and Semiconductors

    Get PDF
    Etching, lithography, hole formation, surface restructuring and external machining can all be performed on a nanometre scale using an intense electron beam. Results are presented for a range of different materials which demonstrate the variety of mechanisms by which electron beam nano-etching can occur. For example, in crystalline 13-alumina hole formation occurs by surface indentations growing inwards to join up and form a nanometre diameter hole. In amorphous alumina, on the other hand, hole formation is from the inside-out: oxygen gas bubbles form under the electron beam, coalesce, and burst to leave a well defined nanometre diameter hole. In MgO and Si, holes develop from the electron exit surface: whereas in Al voids form along the irradiated volume, leading eventually to the development of a hole at the electron entrance surface. The potential of electron beam nano-etching to lithography and information storage is demonstrated by showing that the entire contents of the Encyclopaedia Britannica can be written on a pinhead

    Give us a game : evaluating the opportunities that exist for English footballers to play in the English Premier League

    Get PDF
    The purpose of this study was to provide a detailed, large-scale retrospective analysis of the number of English footballers that have been developed to play in the English Premier League (EPL) over twenty seasons. Unlike previous research, we examined appearance data as opposed to percentage of squad data enabling a more accurate representation of English players appearing in the EPL. The findings revealed a steady decline in the number and proportion of appearances made by English players in the EPL throughout the twenty season period. However, the results also indicated that the rate of decline had abated since the inception of UEFA's home-grown rule. The results support the view that opportunities for indigenous players have diminished since the EPL's inception. Given the short-term, results-focused culture that prevails in the EPL, this would appear to present a major challenge for governing bodies, particularly those working in elite player development. Discussion surrounding how these challenges might be met is presented

    Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis

    Get PDF
    We conducted extensive histological examination of the tissues that were adjacent to the prosthesis in nine hips that had a failed total arthroplasty. The prostheses were composed of titanium alloy (Ti-6Al-4V) and ultra-high molecular weight polyethylene. The average time that the prosthesis had been in place in the tissue was 33.5 months (range, eleven to fifty-seven months). Seven arthroplasties were revised because of aseptic loosening and two, for infection. In eight hips cement had been used and in one (that had a porous-coated implant for fifty-two months) no cement had been utilized. Intense histiocytic and plasma-cell reaction was noted in the pseudocapsular tissue. There was copious metallic staining of the lining cells. Polyethylene debris and particles of cement with concomitant giant-cell reaction were present in five hips. Atomic absorption spectrophotometry revealed values for titanium of fifty-sic to 3700 micrograms per gram of dry tissue (average, 1047 micrograms per gram; normal, zero microgram per gram), for aluminum of 2.1 to 396 micrograms per gram (average, 115 micrograms per gram; normal, zero micrograms per gram), and for vanadium of 2.9 to 220 micrograms per gram (average, sixty-seven micrograms per gram; normal, 1.2 micrograms per gram). The highest values were found in the hip in which surgical revision was performed at fifty-seven months. The concentrations of the three elements in the soft tissues were similar to those in the metal of the prostheses. The factors to which failure was attributed were: vertical orientation of the acetabular component (five hips), poor cementing technique on the femoral side (three hips), infection (two hips), and separation of a sintered pad made of pure titanium (one hip). A femoral component that is made of titanium alloy can undergo severe wear of the surface and on the stem, where it is loose, with liberation of potentially toxic local concentrations of metal debris into the surrounding tissues. It may contribute to infection and loosening
    corecore