3 research outputs found

    Viral infections in outpatients with medically attended acute respiratory illness during the 2012-2013 influenza season

    Get PDF
    While it is known that acute respiratory illness (ARI) is caused by an array of viruses, less is known about co-detections and the resultant comparative symptoms and illness burden. This study examined the co-detections, the distribution of viruses, symptoms, and illness burden associated with ARI between December 2012 and March 2013. Methods: Outpatients with ARI were assayed for presence of 18 viruses using multiplex reverse transcriptase polymerase chain reaction (MRT-PCR) to simultaneously detect multiple viruses. Results: Among 935 patients, 60% tested positive for a single virus, 9% tested positive for ≥1 virus and 287 (31%) tested negative. Among children (<18 years), the respective distributions were 63%, 14%, and 23%; whereas for younger adults (18-49 years), the distributions were 58%, 8%, and 34% and for older adults (≥50 years) the distributions were 61%, 5%, and 32% (P < 0.001). Co-detections were more common in children than older adults (P = 0.01), and less frequent in households without children (P = 0.003). Most frequently co-detected viruses were coronavirus, respiratory syncytial virus, and influenza A virus. Compared with single viral infections, those with co-detections less frequently reported sore throat (P = 0.01), missed fewer days of school (1.1 vs. 2 days; P = 0.04), or work (2 vs. 3 days; P = 0.03); other measures of illness severity did not vary. Conclusions: Among outpatients with ARI, 69% of visits were associated with a viral etiology. Co-detections of specific clusters of viruses were observed in 9% of ARI cases particularly in children, were less frequent in households without children, and were less symptomatic (e.g., lower fever) than single infections

    Diagnosis of Human Metapneumovirus Infection in Immunosuppressed Lung Transplant Recipients and Children Evaluated for Pertussis

    Get PDF
    Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that is known to cause respiratory tract infections in children and immunocompromised individuals. Given the difficulties of identifying hMPV by conventional culture, molecular techniques could improve the detection of this virus in clinical specimens. In this study, we developed a real-time reverse transcription-PCR (RT-PCR) assay designed to detect the four genetic lineages of hMPV. This assay and a commercial real-time nucleic acid sequence-based amplification (NASBA) assay (bioMérieux, Durham, NC) were used to determine the prevalence of hMPV in 114 immunosuppressed asymptomatic and symptomatic lung transplant recipients and 232 pediatric patients who were being evaluated for pertussis. hMPV was detected in 4.3% of the immunosuppressed lung transplant recipients and in 9.9% of children evaluated for pertussis. Both RT-PCR and NASBA assays were efficient in detection of hMPV infection in respiratory specimens. Even though hMPV was detected in a small number of the lung transplant recipients, it was still the most prevalent etiologic agent detected in patients with respiratory symptoms. In both of these diverse patient populations, hMPV infection was the most frequent viral respiratory tract infection identified. Given our findings, infection with hMPV infection should be determined as part of the differential diagnosis of respiratory illnesses
    corecore