5 research outputs found

    An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions

    Get PDF
    Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans

    Tyrosine 331 and phenylalanine 334 in Clostridium perfringens α-toxin are essential for cytotoxic activity

    Get PDF
    AbstractDifferences in the biological properties of the Clostridium perfringens phospholipase C (α-toxin) and the C. bifermentans phospholipase C (Cbp) have been attributed to differences in their carboxy-terminal domains. Three residues in the carboxy-terminal domain of α-toxin, which have been proposed to play a role in membrane recognition (D269, Y331 and F334), are not conserved in Cbp (Y, L and I respectively). We have characterised D269Y, Y331L and F334I variant forms of α-toxin. Variant D269Y had reduced phospholipase C activity towards aggregated egg yolk phospholipid but increased haemolytic and cytotoxic activity. Variants Y331L and F334I showed a reduction in phospholipase C, haemolytic and cytotoxic activities indicating that these substitutions contribute to the reduced haemolytic and cytotoxic activity of Cbp

    Role of trehalose biosynthesis in environmental survival and virulence of Salmonella enterica serovar typhimurium.

    No full text
    The otsA and otsB genes, encoding trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase respectively, have been isolated from Salmonella enterica serovar typhimurium and nucleotide-sequenced. Induction of trehalose biosynthesis by exposure of bacteria to high osmotic strength resulted in the intracellular accumulation of trehalose. An otsA mutant of S. enterica serovar typhimurium was more susceptible to killing by heat, and grew poorly under conditions of high osmolarity. The wild-type and otsA mutant strains showed similar abilities to colonise spleen tissues after oral dosing of mice. These findings suggest that the otsBA gene products play a role in environmental survival, but not in virulence, of S. enterica serovar typhimurium
    corecore