5 research outputs found
A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis
This is the final version of the article. Available from Springer Nature via the DOI in this record.Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.This work was supported by the Defence Science and Technology Laboratory under contract DSTLX-1000060221 (WP1)
An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions
This is the final version. Available from BMC via the DOI in this recordAvailability of data and materials:
The datasets supporting the conclusions of this article are available at the NCBI GEO website https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100226.BACKGROUND: The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. RESULTS: Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. CONCLUSIONS: Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans.This work was funded by the Defence Science and Technology Laboratory, award DSTLX-1000060221 (WP1)
Global Analysis of Genes Essential for Francisella tularensis Schu S4 Growth In Vitro and for Fitness during Competitive Infection of Fischer 344 Rats
This is the final version. Available from American Society for Microbiology via the DOI in this record The highly virulent intracellular pathogen Francisella tularensis is a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis of Francisella virulence in the Fischer 344 rat, we have constructed an F. tularensis Schu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growth in vitro Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. This in vivo selection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-type F. tularensis Schu S4 strain.IMPORTANCE The intracellular bacterial pathogen Francisella tularensis causes a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches. F. tularensis is one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important for F. tularensis under in vitro and in vivo conditions, providing candidates that can be evaluated for vaccine or antibacterial development.Biotechnology & Biological Sciences Research Council (BBSRC)Defence Science and Technology Laboratory (DSTL
The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties
Clostridium perfringens alpha-toxin is a 370-residue, zinc-dependent, phospholipase C that is the key virulence determinant in gas gangrene. It is also implicated in the pathogenesis of sudden death syndrome in young animals and necrotic enteritis in chickens. Previously characterized alpha-toxins from different strains of C. perfringens are almost identical in sequence and biochemical properties. We describe the cloning, nucleotide sequencing, expression, characterization, and crystal structure of alpha-toxin from an avian strain, SWan C. perfringens (SWCP), which has a large degree of sequence variation and altered substrate specificity compared to these strains. The structure of alpha-toxin from strain CER89L43 has been previously reported in open (active site accessible to substrate) and closed (active site obscured by loop movements) conformations. The SWCP structure is in an open-form conformation, with three zinc ions in the active site. This is the first example of an open form of alpha-toxin crystallizing without the addition of divalent cations to the crystallization buffer, indicating that the protein can retain three zinc ions bound in the active site. The topology of the calcium binding site formed by residues 269, 271, 336, and 337, which is essential for membrane binding, is significantly altered in comparison with both the open and closed alpha-toxin structures. We are able to relate these structural changes to the different substrate specificity and membrane binding properties of this divergent alpha-toxin. This will provide essential information when developing an effective vaccine that will protect against C. perfringens infection in a wide range of domestic livestock
Optimization of preservation conditions of As (III) bioreporter bacteria.
Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4 degrees C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage