7 research outputs found
A randomized controlled trial of nonoperative treatment versus open reduction and internal fixation for stable, displaced, partial articular fractures of the radial head: the RAMBO trial
Background: The choice between operative or nonoperative treatment is questioned for partial articular fractures of the radial head that have at least 2 millimeters of articular step-off on at least one radiograph (defined as displaced), but less than 2 millimeter of gap between the fragments (defined as stable) and that are not associated with an elbow dislocation, interosseous ligament injury, or other fractures. These kinds of fractures are often classified as Mason type-2 fractures. Retrospective comparative studies suggest that operative treatment might be better than nonoperative treatment, but the long-term results of nonoperative treatment are very good. Most experts agree that problems like reduced range of motion, painful crepitation, nonunion or bony ankylosis are infrequent with both nonoperative and operative treatment of an isolated displaced partial articular fracture of the radial head, but determining which patients will have problems is difficult. A prospective, randomized comparison would help minimize bias and determine the balance between operative and nonoperative risks and benefits. Methods/Design: The RAMBO trial (Radial Head - Amsterdam - Amphia - Boston - Others) is an international prospective, randomized, multicenter trial. The primary objective of this study is to compare patient related outcome defined by the 'Disabilities of Arm, Shoulder and Hand (DASH) score' twelve months after injury between operative and nonoperative treated patients. Adult patients with partial articular fractures of the radial head that comprise at least 1/3rd of the articular surface, have >= 2 millimeters of articular step-off but less than 2 millimeter of gap between the fragments will be enrolled. Secondary outcome measures will be the Mayo Elbow Performance Index (MEPI), the Oxford Elbow Score (OES), pain intensity through the 'Numeric Rating Scale', range of motion (flexion arc and rotational arc), radiographic appearance of the fracture (heterotopic ossification, radiocapitellar and ulnohumeral arthrosis, fracture healing, and signs of implant loosening or breakage) and adverse events (infection, nerve injury, secondary interventions) after one year. Discussion: The successful completion of this trial will provide evidence on the best treatment for stable, displaced, partial articular fractures of the radial head
High-Flexion Total Knee Replacement: Functional Outcome at One Year
Implants designed for enhanced flexion offer the prospect of improved function after total knee replacement (TKR). Whereas most studies evaluating these implants have focused on the range of knee flexion achieved, this study investigated the quality of function in deep knee flexion. The influences of residual pain and maximum flexion angle on function in deep knee flexion were also examined. Eighty-three patients (100 knees) were prospectively followed for 1 year after TKR with a rotating-platform posterior-stabilized high-flexion prosthesis. Range of motion was measured and Knee Society scores were calculated. A questionnaire evaluated residual knee pain and function in high-flexion activities. Mean Knee Society score was 95, and mean knee flexion was 125°, yet 20% of patients could neither kneel, nor squat, nor sit on their heels. Fifty-seven percent were able to kneel without significant difficulty; 69% were able to squat without significant difficulty; and 46% were able to sit on their heels without significant difficulty. Function in deep flexion correlated with pain scores but did not correlate with knee flexion angles or Knee Society scores. Results 1 year after TKR with a rotating-platform posterior-stabilized high-flexion prosthesis are encouraging, but one in five patients remain significantly limited in high-flexion activities