1,188 research outputs found
Quantum Critical Points in Quantum Impurity Systems
The numerical renormalization group method is used to investigate zero
temperature phase transitions in quantum impurity systems, in particular in the
soft-gap Anderson model, where an impurity couples to a non-trivial fermionic
bath. In this case, zero temperature phase transitions occur between two
different phases whose fixed points can be built up of non-interacting
single-particle states. However, the quantum critical point cannot be described
by non-interacting fermionic or bosonic excitations.Comment: 2 pages, 3 figures, submitted to SCES'0
Numerical Renormalization Group for Bosonic Systems and Application to the Subohmic Spin-Boson Model
We describe the generalization of Wilson's Numerical Renormalization Group
method to quantum impurity models with a bosonic bath, providing a general
non-perturbative approach to bosonic impurity models which can access
exponentially small energies and temperatures. As an application, we consider
the spin-boson model, describing a two-level system coupled to a bosonic bath
with power-law spectral density, J(omega) ~ omega^s. We find clear evidence for
a line of continuous quantum phase transitions for subohmic bath exponents
0<s<1; the line terminates in the well-known Kosterlitz-Thouless transition at
s=1. Contact is made with results from perturbative renormalization group, and
various other applications are outlined.Comment: 4 pages, 5 figs, (v2) final version as publishe
Numerical Renormalization Group Calculations for the Self-energy of the impurity Anderson model
We present a new method to calculate directly the one-particle self-energy of
an impurity Anderson model with Wilson's numerical Renormalization Group method
by writing this quantity as the ratio of two correlation functions. This way of
calculating Sigma(z) turns out to be considerably more reliable and accurate
than via the impurity Green's function alone. We show results for the
self-energy for the case of a constant coupling between impurity and conduction
band (ImDelta = const) and the effective Delta(z) arising in the Dynamical Mean
Field Theory of the Hubbard model. Implications to the problem of the
metal-insulator transition in the Hubbard model are also discussed.Comment: 18 pages, 9 figures, submitted to J. Phys.: Condens. Matte
Numerical renormalization group study of the symmetric Anderson-Holstein model: phonon and electron spectral functions
We study the symmetric Anderson-Holstein (AH) model at zero temperature with
Wilson's numerical renormalization group (NRG) technique to study the interplay
between the electron-electron and electron-phonon interactions. An improved
method for calculating the phonon propagator using the NRG technique is
presented, which turns out to be more accurate and reliable than the previous
works in that it calculates the phonon renormalization explicitly and satisfies
the boson sum rule better. The method is applied to calculate the renormalized
phonon propagators along with the electron propagators as the onsite Coulomb
repulsion and electron-phonon coupling constant are varied. As is
increased, the phonon mode is successively renormalized, and for crosses over to the regime where the mode splits into two components,
one of which approaches back to the bare frequency and the other develops into
a soft mode. The initial renormalization of the phonon mode, as is
increased from 0, depends on and the hybridization ; it gets
softened (hardened) for . Correlated with
the emergence of the soft mode is the central peak of the electron spectral
function severely suppressed. These NRG calculations will be compared with the
standard Green's function results for the weak coupling regime to understand
the phonon renormalization and soft mode.Comment: 18 pages, 4 figures. Submitted to Phys. Rev.
Spectral properties of locally correlated electrons in a BCS superconductor
We present a detailed study of the spectral properties of a locally
correlated site embedded in a BCS superconducting medium. To this end the
Anderson impurity model with superconducting bath is analysed by numerical
renormalisation group (NRG) calculations. We calculate one and two-particle
dynamic response function to elucidate the spectral excitation and the nature
of the ground state for different parameter regimes with and without
particle-hole symmetry. The position and weight of the Andreev bound states is
given for all relevant parameters. We also present phase diagrams for the
different ground state parameter regimes. This work is also relevant for
dynamical mean field theory extensions with superconducting symmetry breaking.Comment: 22 pages, 12 figure
Electron Transfer in Donor-Acceptor Systems: Many-Particle Effects and Influence of Electronic Correlations
We investigate electron transfer processes in donor-acceptor systems with a
coupling of the electronic degrees of freedom to a common bosonic bath. The
model allows to study many-particle effects and the influence of the local
Coulomb interaction U between electrons on donor and acceptor sites. Using the
non-perturbative numerical renormalization group approach we find distinct
differences between the electron transfer characteristics in the single- and
two-particle subspaces. We calculate the critical electron-boson coupling
alpha_c as a function of and show results for density-density correlation
functions in the whole parameter space. The possibility of many-particle
(bipolaronic) and Coulomb-assisted transfer is discussed.Comment: 4 pages, 4 figure
Quantum Monte Carlo calculation of the finite temperature Mott-Hubbard transition
We present clear numerical evidence for the coexistence of metallic and
insulating dynamical mean field theory(DMFT) solutions in a half-filled
single-band Hubbard model with bare semicircular density of states at finite
temperatures. Quantum Monte Carlo(QMC) method is used to solve the DMFT
equations. We discuss important technical aspects of the DMFT-QMC which need to
be taken into account in order to obtain the reliable results near the
coexistence region. Among them are the critical slowing down of the iterative
solutions near phase boundaries, the convergence criteria for the DMFT
iterations, the interpolation of the discretized Green's function and the
reduction of QMC statistical and systematic errors. Comparison of our results
with those of other numerical methods is presented in a phase diagram.Comment: 4 pages, 5 figure
Hydrogen contamination in Ge-doped SiO[sub 2] thin films prepared by helicon activated reactive evaporation
Germanium-doped silicon oxidethin films were deposited at low temperature by using an improved helicon plasma assisted reactive evaporation technique. The origins of hydrogen contamination in the film were investigated, and were found to be H incorporation during deposition and postdeposition water absorption. The H incorporation during deposition was avoided by using an effective method to eliminate the residual hydrogen present in the depositionsystem. The microstructure, chemical bonds, chemical etch rate, and optical index of the films were studied as a function of the deposition conditions. Granular microstructures were observed in low-density films, and were found to be the cause of postdeposition water absorption. The granular microstructure was eliminated and the film was densified by increasing the helicon plasma power and substrate bias during deposition. A high-density film was shown to have no postdeposition water absorption and no OH detected by using a Fourier-transform infrared spectrometer
China’s Struggle against Covid-19: Crisis Management under Analysis
The Chinese government combat against the dissemination of the new coronavirus1 should be seen as a case study capable of explaining the political system and the country s economic model taking into consideration the strategies adopted by the Communist Party of China CPC fundamentally supported in science and technology Based on the understanding that the management of the sanitary crisis should be seen as an example of public policy action this paper is to present the importance of communication and coordination to overcome the challenges to civil society by the pandemic through administrative mechanisms and organizational structures This analysis considers the governance of the Chinese state in combating disease as a disruptive process and aims to share practical solutions from the instruments used such as the industrial conversion the mobilization of the workforce the QR code and the Social Credit System SCS among others For such analysis we will take into consideration the adopted actions during pandemic crises contextualizing it into China s historical and cultural aspects as well as the referent CPC s policies inserting the global conjuncture to point the direction to be followed in a post-covid-19 scenario contesting the social stigma against the country and its peopl
Nonresonant inelastic light scattering in the Hubbard model
Inelastic light scattering from electrons is a symmetry-selective probe of
the charge dynamics within correlated materials. Many measurements have been
made on correlated insulators, and recent exact solutions in large dimensions
explain a number of anomalous features found in experiments. Here we focus on
the correlated metal, as described by the Hubbard model away from half filling.
We can determine the B1g Raman response and the inelastic X-ray scattering
along the Brillouin zone diagonal exactly in the large dimensional limit. We
find a number of interesting features in the light scattering response which
should be able to be seen in correlated metals such as the heavy fermions.Comment: 9 pages, 7 figures, typeset with ReVTe
- …