223 research outputs found

    The Hitting Times with Taboo for a Random Walk on an Integer Lattice

    Full text link
    For a symmetric, homogeneous and irreducible random walk on d-dimensional integer lattice Z^d, having zero mean and a finite variance of jumps, we study the passage times (with possible infinite values) determined by the starting point x, the hitting state y and the taboo state z. We find the probability that these passages times are finite and analyze the tails of their cumulative distribution functions. In particular, it turns out that for the random walk on Z^d, except for a simple (nearest neighbor) random walk on Z, the order of the tail decrease is specified by dimension d only. In contrast, for a simple random walk on Z, the asymptotic properties of hitting times with taboo essentially depend on the mutual location of the points x, y and z. These problems originated in our recent study of branching random walk on Z^d with a single source of branching

    FACT - Time-resolved blazar SEDs

    Get PDF
    Blazars are highly variable objects and their spectral energy distribution (SED) features two peaks. The emission at low energies is understood, however, the origin of the emission at TeV energies is strongly debated. While snapshots of SEDs usually can be explained with simple models, the evolution of SEDs challenges many models and allows for conclusions on the emission mechanisms. Leptonic models expect a correlation between the two peaks, while hadronic models can accommodate more complex correlations. To study time-resolved SEDs, we set up a target-of-opportunity program triggering high-resolution X-ray observations based on the monitoring at TeV energies by the First G-APD Cherenkov Telescope (FACT). To search for time lags and identify orphan flares, this is accompanied by X-ray monitoring with the Swift satellite. These observations provide an excellent multi-wavelength (MWL) data sample showing the temporal behaviour of the blazar emission along the electromagnetic spectrum. To constrain the origin of the TeV emission, we extract the temporal evolution of the low energy peak from Swift data and calculate the expected flux at TeV energies using a theoretical model. Comparing this to the flux measured by FACT, we want to conclude on the underlying physics. Results from more than five years of monitoring will be discussed.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walter, FACT Collaboration, A. Kreikenbohm, K. Leite

    FACT - Highlights from more than Five Years of Unbiased Monitoring at TeV Energies

    Get PDF
    The First G-APD Cherenkov Telescope (FACT) is monitoring blazars at TeV energies. Thanks to the observing strategy, the automatic operation and the usage of solid state photosensors (SiPM, aka G-APDs), the duty cycle of the instrument has been maximized and the observational gaps minimized. This provides a unprecedented, unbiased data sample of almost 9000~hours of data of which 2375 hours were taken in 2016. An automatic quick look analysis provides results with low latency on a public website. More than 40 alerts have been sent in the last three years based on this. To study the origin of the very high energy emission from blazars simultaneous multi-wavelength and multi-messenger observations are crucial to draw conclusions on the underlying emission mechanisms, e.g. to distinguish between leptonic and hadronic models. FACT not only participates in multi-wavelength studies, correlation studies with other instruments and multi-messenger studies, but also collects time-resolved spectral energy distributions using a target-of-opportunity program with X-ray satellites. At TeV energies, FACT provides an unprecedented, unbiased data sample. Using up to 1850 hours per source, the duty cycle of the sources and the characteristics of flares at TeV energies are studied. In the presentation, the highlights from more than five years of monitoring will be summarized including several flaring activities of Mrk 421, Mrk 501 and 1ES 1959+650.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    Primary cilia disappear in rat podocytes during glomerular development

    Get PDF
    Most tubular epithelial cell types express primary cilia, and mutations of primary-cilium-associated proteins are well known to cause several kinds of cystic renal disease. However, until now, it has been unclear whether mammalian podocytes express primary cilia in vivo. In this study, we determined whether primary cilia are present in the podocytes of rat immature and mature glomeruli by means of transmission electron microscopy of serial ultrathin sections. In immature glomeruli of fetal rats, podocytes express the primary cilia with high percentages at the S-shaped body (88 ± 5%, n = 3), capillary loop (95 ± 4%, n =  4), and maturing glomerulus (76 ± 13%, n = 5) stages. The percentage of ciliated podocytes was significantly lower at the maturing glomerulus stage than at the former two stages. In mature glomeruli of adult rats, ciliated podocytes were not found at all (0 ± 0%, n = 11). These findings indicate that the primary cilia gradually disappear in rat podocytes during glomerular development. Since glomerular filtration rate increases during development, the primary cilia on the podocytes are subjected to a stronger bending force. Thus, the disappearance of the primary cilia presumably prevents the entry of excessive calcium-ions via the cilium-associated polycystin complexes and the disturbance of intracellular signaling cascades in mature podocytes
    • …
    corecore