431 research outputs found

    Aggregation of Votes with Multiple Positions on Each Issue

    Full text link
    We consider the problem of aggregating votes cast by a society on a fixed set of issues, where each member of the society may vote for one of several positions on each issue, but the combination of votes on the various issues is restricted to a set of feasible voting patterns. We require the aggregation to be supportive, i.e. for every issue jj the corresponding component fjf_j of every aggregator on every issue should satisfy fj(x1,,,xn){x1,,,xn}f_j(x_1, ,\ldots, x_n) \in \{x_1, ,\ldots, x_n\}. We prove that, in such a set-up, non-dictatorial aggregation of votes in a society of some size is possible if and only if either non-dictatorial aggregation is possible in a society of only two members or a ternary aggregator exists that either on every issue jj is a majority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=x,x,yf_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =x, \forall x,y, or on every issue is a minority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=y,x,y.f_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =y, \forall x,y. We then introduce a notion of uniformly non-dictatorial aggregator, which is defined to be an aggregator that on every issue, and when restricted to an arbitrary two-element subset of the votes for that issue, differs from all projection functions. We first give a characterization of sets of feasible voting patterns that admit a uniformly non-dictatorial aggregator. Then making use of Bulatov's dichotomy theorem for conservative constraint satisfaction problems, we connect social choice theory with combinatorial complexity by proving that if a set of feasible voting patterns XX has a uniformly non-dictatorial aggregator of some arity then the multi-sorted conservative constraint satisfaction problem on XX, in the sense introduced by Bulatov and Jeavons, with each issue representing a sort, is tractable; otherwise it is NP-complete

    On the Computational Complexity of Non-dictatorial Aggregation

    Full text link
    We investigate when non-dictatorial aggregation is possible from an algorithmic perspective, where non-dictatorial aggregation means that the votes cast by the members of a society can be aggregated in such a way that the collective outcome is not simply the choices made by a single member of the society. We consider the setting in which the members of a society take a position on a fixed collection of issues, where for each issue several different alternatives are possible, but the combination of choices must belong to a given set XX of allowable voting patterns. Such a set XX is called a possibility domain if there is an aggregator that is non-dictatorial, operates separately on each issue, and returns values among those cast by the society on each issue. We design a polynomial-time algorithm that decides, given a set XX of voting patterns, whether or not XX is a possibility domain. Furthermore, if XX is a possibility domain, then the algorithm constructs in polynomial time such a non-dictatorial aggregator for XX. We then show that the question of whether a Boolean domain XX is a possibility domain is in NLOGSPACE. We also design a polynomial-time algorithm that decides whether XX is a uniform possibility domain, that is, whether XX admits an aggregator that is non-dictatorial even when restricted to any two positions for each issue. As in the case of possibility domains, the algorithm also constructs in polynomial time a uniform non-dictatorial aggregator, if one exists. Then, we turn our attention to the case where XX is given implicitly, either as the set of assignments satisfying a propositional formula, or as a set of consistent evaluations of an sequence of propositional formulas. In both cases, we provide bounds to the complexity of deciding if XX is a (uniform) possibility domain.Comment: 21 page

    Anomalous tunneling of bound pairs in crystal lattices

    Full text link
    A novel method of solving scattering problems for bound pairs on a lattice is developed. Two different break ups of the hamiltonian are employed to calculate the full Green operator and the wave function of the scattered pair. The calculation converges exponentially in the number of basis states used to represent the non-translation invariant part of the Green operator. The method is general and applicable to a variety of scattering and tunneling problems. As the first application, the problem of pair tunneling through a weak link on a one-dimensional lattice is solved. It is found that at momenta close to \pi the pair tunnels much easier than one particle, with the transmission coefficient approaching unity. This anomalously high transmission is a consequence of the existence of a two-body resonant state localized at the weak link.Comment: REVTeX, 5 pages, 4 eps figure

    Hyperspherical theory of anisotropic exciton

    Full text link
    A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.Comment: 23 pages, 8 figure

    Shear band dynamics from a mesoscopic modeling of plasticity

    Full text link
    The ubiquitous appearance of regions of localized deformation (shear bands) in different kinds of disordered materials under shear is studied in the context of a mesoscopic model of plasticity. The model may or may not include relaxational (aging) effects. In the absence of relaxational effects the model displays a monotonously increasing dependence of stress on strain-rate, and stationary shear bands do not occur. However, in start up experiments transient (although long lived) shear bands occur, that widen without bound in time. I investigate this transient effect in detail, reproducing and explaining a t^1/2 law for the thickness increase of the shear band that has been obtained in atomistic numerical simulations. Relaxation produces a negative sloped region in the stress vs. strain-rate curve that stabilizes the formation of shear bands of a well defined width, which is a function of strain-rate. Simulations at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin shear bands that has relevance in the study of seismic phenomena. In addition, other non-stationary processes, such as stop-and-go, or strain-rate inversion situations display a phenomenology that matches very well the results of recent experimental studies.Comment: 10 pages, 10 figure

    Microstructural Shear Localization in Plastic Deformation of Amorphous Solids

    Full text link
    The shear-transformation-zone (STZ) theory of plastic deformation predicts that sufficiently soft, non-crystalline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A limited nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening in both constant-stress and constant-strain-rate experiments. The analysis presented here pertains only to one-dimensional banding patterns in two-dimensional systems, and only to very low temperatures. It uses the rudimentary form of the STZ theory in which there is only a single kind of zone rather than a distribution of them with a range of transformation rates. Nevertheless, the results are in qualitative agreement with essential features of the available experimental data. The nonlinear theory also implies that harder materials, which do not undergo a microstructural instability, may form isolated shear bands in weak regions or, perhaps, at points of concentrated stress.Comment: 32 pages, 6 figure

    Bose-Einstein Condensation of Excitons: Reply to Tikhodeev's Criticism

    Full text link
    The extended version of our reply to Comment on ``Critical Velocities in Exciton Superfluidity'' by S. G. Tikhodeev (Phys. Rev. Lett., 84 (2000), 3502 or from http://prl.aps.org/) is presented here. The principal question is discussed: does the moving exciton-phonon packet contain the coherent `nucleus', or the exciton-phonon condensate?Comment: 3 pages in LaTe

    On Critical Velocities in Exciton Superfluidity

    Full text link
    The presence of exciton phonon interactions is shown to play a key role in the exciton superfluidity. We apply the Landau criterion for an exciton-phonon condensate moving uniformly at zero temperature. It turns out that there are essentially two critical velocities in the theory. Within the range of these velocities the condensate can exist only as a bright soliton. The excitation spectrum and differential equations for the wave function of this condensate are derived.Comment: 7 pages, Latex; to be published in Phys.Rev.Lett (1997

    Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: Structure, assembly and small-molecule modulation

    Get PDF
    © The Authors Journal compilation © 2015 Biochemical Society. In the last decade, the ubiquitin-proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin-RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs

    Strain localization in a shear transformation zone model for amorphous solids

    Full text link
    We model a sheared disordered solid using the theory of Shear Transformation Zones (STZs). In this mean-field continuum model the density of zones is governed by an effective temperature that approaches a steady state value as energy is dissipated. We compare the STZ model to simulations by Shi, et al.(Phys. Rev. Lett. 98 185505 2007), finding that the model generates solutions that fit the data,exhibit strain localization, and capture important features of the localization process. We show that perturbations to the effective temperature grow due to an instability in the transient dynamics, but unstable systems do not always develop shear bands. Nonlinear energy dissipation processes interact with perturbation growth to determine whether a material exhibits strain localization. By estimating the effects of these interactions, we derive a criterion that determines which materials exhibit shear bands based on the initial conditions alone. We also show that the shear band width is not set by an inherent diffusion length scale but instead by a dynamical scale that depends on the imposed strain rate.Comment: 8 figures, references added, typos correcte
    corecore