4 research outputs found

    Luminescent Water-Dispersible Nanoparticles Engineered from Copper(I) Halide Cluster Core and P,N-Ligand with an Optimal Balance between Stability and ROS Generation

    No full text
    The present work introduces the solvent exchange procedure as a route for conversion of the Cu4I4L2 complex, where the Cu4I4 cluster core is coordinated with two P,N-ligands (L), into an aqueous colloid. The analysis of both colloidal and supernatant phases revealed some losses in CuI going from the initial Cu4I4L2 complex to Cu2I2L3-based nanoparticles. The comparative analysis of IR, 31P NMR spectroscopy, ESI mass-spectrometry and luminescence data argued for a contribution of the “butterfly”-like structures of the Cu2I2 cluster core to Cu2I2L3-based nanoparticles, although the amorphous nature of the latter restricted structure evaluation from the PXRD data. The green luminescence of the colloids revealed their chemical stability under pH variations in the solutions of some amino acids and peptides, and to specify the temperature and concentration conditions triggering the oxidative degradation of the nanoparticles. The spin trap-facilitated ESR study indicated that the oxidative transformations were followed by the generation of reactive oxygen species (ROS). The physiological temperature level (310 K) enhanced the ROS generation by nanoparticles, but the ROS level was suppressed in the solution of GSH at pH = 7.0. The cytotoxicity of nanoparticles was evaluated in the M-HeLa cell line and is discussed in correlation with their cell internalization and intracellular oxidative transformations

    ROS-producing nanomaterial engineered from Cu(I) complexes with P2N2-ligands for cancer cells treating

    No full text
    Abstract The work presents core–shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization
    corecore