419 research outputs found

    Comment on "Ferromagnetic film on a superconducting substrate"

    Full text link
    A superconducting substrate is not able to shrink drastically domains in a ferromagnetic film, contrary to the prediction of Bulaevskii and Chudnovsky [Phys. Rev. B, 63, issue1 (2001)]. This is shown on the basis of the exact solution for the stripe domain structure.Comment: 8 pages, 1 figure, the version published in Phys. Rev.

    Ferromagnetic Film on a Superconducting Substrate

    Full text link
    We study the equilibrium domain structure and magnetic flux around a ferromagnetic (FM) film with perpendicular magnetization M_0 on a superconducting (SC) substrate. At 4{\pi}M_0<H_{c1} the SC is in the Meissner state and the equilibrium domain width in the film, l, scales as (l/4{\pi}{\lambda}_{L}) = (l_{N}/4{\pi}{\lambda}_{L})^{2/3} with the domain width on a normal (non-superconducting) substrate, l_{N}/4\pi\lambda_L >> 1. Here \lambda_L is the London penetration length. For 4{\pi}M_0 > H_{c1} and l_{N} in excess of about 35 {\lambda}_{L}, the domains are connected by SC vortices. We argue that pinning of vortices by magnetic domains in FM/SC multilayers can provide high critical currents.Comment: 4 pages, 2 figures, submitted to PR

    Inhomogeneous LOFF phase revisited for surface superconductivity

    Full text link
    We consider 2D surface superconductivity in high magnetic fields parallel to the surface. We demonstrate that the spin-orbit interaction at the surface changes the properties of the inhomogeneous superconducting Larkin-Ovchinnikov-Fulde-Ferrell state that develops above fields given by the paramagnetic criterion. Strong spin-orbit interaction significantly broadens the range of existence of the LOFF phase, which takes the form of periodic superconducting stripes running along the field direction on the surface, leading to the anisotropy of its properties. In connection with experiments by J.H. Schon et al. [Nature 914, 434 (2001)] on superconductivity of electrically doped films of the cuprate material CaCuO2, we also discuss this problem for the d-wave pairing to indicate the possibility of a re-orientation transition as the magnetic field direction is rotated in the plane parallel to the surface. Our results provide a tool for studying surface superconductivity as a function of doping.Comment: 4 pages, 1 fig, revtex

    Hysteretic nonequilibrium Ising-Bloch transition

    Full text link
    We show that a parametrically driven cubic-quintic complex Ginzburg-Landau equation exhibits a hysteretic nonequilibrium Ising-Bloch transition for large enough quintic nonlinearity. These results help to understand the recent experimental observation of this pheomenon [A. Esteban-Martin et al., Phys. Rev. Lett. 94, 223903 (2005)].Comment: 3 pages + six figure

    INTERLAYER VORTICES AND EDGE DISLOCATIONS IN HIGH TEMPERATURE SUPERCONDUCTORS

    Full text link
    The interaction of an edge dislocation made of half the superconducting plane with a magnetic interlayer vortex is considered within the framework of the Lawrence-Doniach model with negative as well as positive Josephson interlayer coupling. In the first case the binding energy of the vortex and the dislocation has been calculated by employing a variational procedure. The current distribution around the bound vortex turns out to be asymmetric. In the second case the dislocation carries a spontaneous magnetic half-vortex, whose binding energy with the dislocation turns out to be infinite. The half-vortex energy has been calculated by the same variational procedure. Implications of the possible presence of such half-vortices for the properties of high temperature superconductors are discussed.Comment: 14 Latex pages, 1 figure available upon request

    A strong-coupling expansion for the Hubbard model

    Full text link
    We reconsider the strong-coupling expansion for the Hubbard model recently introduced by Sarker and Pairault {\it et al.} By introducing slave particles that act as projection operators onto the empty, singly occupied and doubly occupied atomic states, the perturbation theory around the atomic limit distinguishes between processes that do conserve or do not conserve the total number of doubly occupied sites. This allows for a systematic t/Ut/U expansion that does not break down at low temperature (tt being the intersite hopping amplitude and UU the local Coulomb repulsion). The fermionic field becomes a two-component field, which reflects the presence of the two Hubbard bands. The single-particle propagator is naturally expressed as a function of a 2×22 \times 2 matrix self-energy. Furthermore, by introducing a time- and space-fluctuating spin-quantization axis in the functional integral, we can expand around a ``non-degenerate'' ground-state where each singly occupied site has a well defined spin direction (which may fluctuate in time). This formalism is used to derive the effective action of charge carriers in the lower Hubbard band to first order in t/Ut/U. We recover the action of the t-J model in the spin-hole coherent-state path integral. We also compare our results with those previously obtained by studying fluctuations around the large-UU Hartree-Fock saddle point.Comment: 20 pages RevTex, 3 figure

    Optical Resonances in Reflectivity near Crystal Modes with Spatial Dispersion

    Full text link
    We study the effect of spatial dispersion of crystal modes on optical properties such as the reflectivity RR. As an example for isotropic media, we investigate the simplest model for phonons in ionic crystals and compare with previous results for highly anisotropic plasmons, which are now understood from a more general point of view. As a consequence of the wave vector dependence of the dielectric function small changes in the lineshape are predicted. Beyond that, if the frequency of minimal RR is near a pole of the dispersionless dielectric function, the relative amplitude of dips in RR with normal and anomalous dispersion differ significantly, if dissipation and disorder are low.Comment: 4 pages, 7 eps figures, minor change

    Novel Phases of Planar Fermionic Systems

    Full text link
    We discuss a {\em family} of planar (two-dimensional) systems with the following phase strucure: a Fermi liquid, which goes by a second order transition (with non classical exponent even in mean-field) to an intermediate, inhomogeneous state (with nonstandard ordering momentum) , which in turn goes by a first order transition to a state with canonical order parameter. We analyze two examples: (i) a superconductor in a parallel magnetic field (which was discussed independently by Bulaevskii)for which the inhomogeneous state is obtained for 1.86Tc<∼B<∼1.862Tc1.86 T_c \stackrel{\sim}{<} B \stackrel{\sim}{<} 1.86 \sqrt{2} T_c where TcT_c is the critical temperature (in Kelvin) of the superconductor without a field and BB is measured in Tesla, and (ii) spinless (or, as is explained, spin polarized) fermions near half-filling where a similar, sizeable window (which grows in size with anisotropy) exists for the intermediate CDW phase at an ordering momentum different from (Ï€,Ï€)(\pi , \pi ). We discuss the experimental conditions for realizing and observing these phases and the Renormalization Group approach to the transitions.Comment: ([email protected],[email protected]) 29 p Latex 4 figs uuencoded separatel

    Thermally Assisted Penetration and Exclusion of Single Vortex in Mesoscopic Superconductors

    Full text link
    A single vortex overcoming the surface barrier in a mesoscopic superconductor with lateral dimensions of several coherence lengths and thickness of several nanometers provides an ideal platform to study thermal activation of a single vortex. In the presence of thermal fluctuations, there is non-zero probability for vortex penetration into or exclusion from the superconductor even when the surface barrier does not vanish. We consider the thermal activation of a single vortex in a mesoscopic superconducting disk of circular shape. To obtain statistics for the penetration and exclusion magnetic fields, slow and periodic magnetic fields are applied to the superconductor. We calculate the distribution of the penetration and exclusion fields from the thermal activation rate. This distribution can also be measured experimentally, which allows for a quantitative comparison.Comment: 7 pages, 4 figure
    • …
    corecore