8 research outputs found

    Vegetal fibers in polymeric composites: a review

    Full text link

    Identification of stiffness tensor components of wood cell walls by means of nanoindentation

    No full text
    A new procedure to characterize the full set of elastic constants of wood cell walls was developed. For the first time, not only the longitudinal modulus, but also the transverse- and the shear modulus were determined in one experimental setup at micron scale. For this purpose, nanoindentation experiments were performed at variable angles between the indentation direction and the direction of cellulose microfibrils in wood cell walls. Using an approach based on anisotropic indentation theory a relationship between the indentation moduli obtained experimentally and the elastic material constants of the cell wall was derived. Using an error minimization procedure, the values of the elastic material constants were finally calculated. As typically observed for natural materials, our experimental results are characterized by high variability. Particularly the elastic modulus in longitudinal cell direction is highly sensitive to small changes in the local orientation of cellulose microfibrils. Nonetheless, reasonable estimates of 26.3 GPa for the longitudinal elastic modulus of the secondary wood cell wall S2, 4.5 GPa for the transverse modulus, and – for the first time – a value of 4.8 GPa for the shear modulus of wood cell wall material were obtained

    Knots in trees: strain distribution in a naturally optimised structure

    No full text
    Electronic speckle pattern interferometry was applied to directly measure the distribution of longitudinal, tangential, and shear strains in small boards of Norway spruce (Picea abies (L.) Karst.) exposed to tensile load in longitudinal direction. A sample with a central intergrown knot and one with an equivalent loose knot were compared with reference samples made of clear wood with an artificial central circular or square hole, respectively. The observed measurements were compared with a finite element (FE) simulation. The FE model was based on a geometric model to quantify the local fibre orientation and a micromechanical model to estimate elastic constants of clear wood and knot tissue. Both the measurements and simulation clearly illustrate a rather homogenous strain distribution around the intergrown knot. In comparison, the natural optimisation of dispersing strain peaks is less efficient in the case of loose knots. The artificial circular and square holes in samples with parallel fibre orientation lead to high gradients in the strain field and peak values in vicinity of the disturbance
    corecore