56 research outputs found

    Creation of Dirac Particles in the Presence of a Constant Electric Field in an Anisotropic Bianchi I Universe

    Get PDF
    In this article we compute the density of Dirac particles created by a cosmological anisotropic Bianchi I universe in the presence of a constant electric field. We show that the particle distribution becomes thermal when one neglects the electric interaction.Comment: 9 page

    Two-dimensional metric and tetrad gravities as constrained second order systems

    Get PDF
    Using the Gitman-Lyakhovich-Tyutin generalization of the Ostrogradsky method for analyzing singular systems, we consider the Hamiltonian formulation of metric and tetrad gravities in two-dimensional Riemannian spacetime treating them as constrained higher-derivative theories. The algebraic structure of the Poisson brackets of the constraints and the corresponding gauge transformations are investigated in both cases.Comment: replaced with revised version published in Mod.Phys.Lett.A22:17-28,200

    One-loop energy-momentum tensor in QED with electric-like background

    Full text link
    We have obtained nonperturbative one-loop expressions for the mean energy-momentum tensor and current density of Dirac's field on a constant electric-like background. One of the goals of this calculation is to give a consistent description of back-reaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contributions are related to the Heisenberg-Euler Lagrangian. Then, we study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the back-reaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.Comment: 35 pages; misprints in the sign in definitions (40)-(43), and (68) corrected, results unchange

    Spinors in Weyl Geometry

    Get PDF
    We consider the wave equation for spinors in D{\cal D}-dimensional Weyl geometry. By appropriately coupling the Weyl vector ϕμ\phi _{\mu} as well as the spin connection ωμab\omega _{\mu a b } to the spinor field, conformal invariance can be maintained. The one loop effective action generated by the coupling of the spinor field to an external gravitational field is computed in two dimensions. It is found to be identical to the effective action for the case of a scalar field propagating in two dimensions.Comment: 13 pages, REVTEX, no figure

    Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker space-time

    Full text link
    The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it.Comment: Important modifications, 20 pages, To appear in Eurpean Physical Journal C. arXiv admin note: text overlap with arXiv:1108.033

    Finite temperature nonlocal effective action for quantum fields in curved space

    Get PDF
    Massless and massive scalar fields and massless spinor fields are considered at arbitrary temperatures in four dimensional ultrastatic curved spacetime. Scalar models under consideration can be either conformal or nonconformal and include selfinteraction. The one-loop nonlocal effective action at finite temperature and free energy for these quantum fields are found up to the second order in background field strengths using the covariant perturbation theory. The resulting expressions are free of infrared divergences. Spectral representations for nonlocal terms of high temperature expansions are obtained.Comment: 32 pages, LaTe
    corecore