98 research outputs found
Domination number of graphs with minimum degree five
We prove that for every graph on vertices and with minimum degree
five, the domination number cannot exceed . The proof combines
an algorithmic approach and the discharging method. Using the same technique,
we provide a shorter proof for the known upper bound on the domination
number of graphs of minimum degree four.Comment: 17 page
Transversal designs and induced decompositions of graphs
We prove that for every complete multipartite graph there exist very
dense graphs on vertices, namely with as many as
edges for all , for some constant , such that can be
decomposed into edge-disjoint induced subgraphs isomorphic to~. This result
identifies and structurally explains a gap between the growth rates and
on the minimum number of non-edges in graphs admitting an
induced -decomposition
The Disjoint Domination Game
We introduce and study a Maker-Breaker type game in which the issue is to
create or avoid two disjoint dominating sets in graphs without isolated
vertices. We prove that the maker has a winning strategy on all connected
graphs if the game is started by the breaker. This implies the same in the
biased game also in the maker-start game. It remains open to
characterize the maker-win graphs in the maker-start non-biased game, and to
analyze the biased game for . For a more restricted
variant of the non-biased game we prove that the maker can win on every graph
without isolated vertices.Comment: 18 page
-WORM colorings of graphs: Lower chromatic number and gaps in the chromatic spectrum
A -WORM coloring of a graph is an assignment of colors to the
vertices in such a way that the vertices of each -subgraph of get
precisely two colors. We study graphs which admit at least one such
coloring. We disprove a conjecture of Goddard et al. [Congr. Numer., 219 (2014)
161--173] who asked whether every such graph has a -WORM coloring with two
colors. In fact for every integer there exists a -WORM colorable
graph in which the minimum number of colors is exactly . There also exist
-WORM colorable graphs which have a -WORM coloring with two colors
and also with colors but no coloring with any of colors. We
also prove that it is NP-hard to determine the minimum number of colors and
NP-complete to decide -colorability for every (and remains
intractable even for graphs of maximum degree 9 if ). On the other hand,
we prove positive results for -degenerate graphs with small , also
including planar graphs. Moreover we point out a fundamental connection with
the theory of the colorings of mixed hypergraphs. We list many open problems at
the end.Comment: 18 page
Approximability of the upper chromatic number of hypergraphs
A C-coloring of a hypergraph H = (X, E) is a vertex coloring φ : X → N such that each edge E ∈ E has at least two vertices with a common color. The related parameter over(χ, -) (H), called the upper chromatic number of H, is the maximum number of colors in a C-coloring of H. A hypertree is a hypergraph which has a host tree T such that each edge E ∈ E induces a connected subgraph in T. Notations n and m stand for the number of vertices and edges, respectively, in a generic input hypergraph. We establish guaranteed polynomial-time approximation ratios for the difference n - over(χ, -) (H), which is 2 + 2 ln (2 m) on hypergraphs in general, and 1 + ln m on hypertrees. The latter ratio is essentially tight as we show that n - over(χ, -) (H) cannot be approximated within (1 - ε{lunate}) ln m on hypertrees (unless NP⊆ DTIME(nO (log log n)) ). Furthermore, over(χ, -) (H) does not have O (n1 - ε{lunate})-approximation and cannot be approximated within additive error o (n) on the class of hypertrees (unless P = NP). © 2014 Elsevier B.V. All rights reserved
- …