2 research outputs found

    Ozonation of Whole Blood Results in an Increased Release of Microparticles from Blood Cells.

    Get PDF
    Autohemotherapy with ozonated blood is used in the treatment of a broad spectrum of clinical disorders. Ozone demonstrates strong oxidizing properties and causes damage to cell membranes. The impact of whole-blood ozonation on the release of microparticles from blood and endothelial cells and the concentration of selected markers in the hemostatic system (APTT, PT, D-dimer, fibrinogen) were investigated. Venous blood, obtained from 19 healthy men, was split into four equal parts and treated with air, 15 碌g/mL ozone, or 30 碌g/mL ozone, or left untreated. The number and types of microparticles released were determined using flow cytometry on the basis of surface antigen expression: erythrocyte-derived microparticles (CD235+), platelet-derived microparticles (CD42+), leukocyte-derived microparticles (CD45+), and endothelial-derived microparticles (CD144+). The study is the first to demonstrate that ozone induces a statistically significant increase in the number of microparticles derived from blood and endothelial cells. Although statistically significant, the changes in some coagulation factors were somewhat mild and did not exceed normal values

    Ozonation of Whole Blood Results in an Increased Release of Microparticles from Blood Cells

    No full text
    Autohemotherapy with ozonated blood is used in the treatment of a broad spectrum of clinical disorders. Ozone demonstrates strong oxidizing properties and causes damage to cell membranes. The impact of whole-blood ozonation on the release of microparticles from blood and endothelial cells and the concentration of selected markers in the hemostatic system (APTT, PT, D-dimer, fibrinogen) were investigated. Venous blood, obtained from 19 healthy men, was split into four equal parts and treated with air, 15 µg/mL ozone, or 30 µg/mL ozone, or left untreated. The number and types of microparticles released were determined using flow cytometry on the basis of surface antigen expression: erythrocyte-derived microparticles (CD235+), platelet-derived microparticles (CD42+), leukocyte-derived microparticles (CD45+), and endothelial-derived microparticles (CD144+). The study is the first to demonstrate that ozone induces a statistically significant increase in the number of microparticles derived from blood and endothelial cells. Although statistically significant, the changes in some coagulation factors were somewhat mild and did not exceed normal values
    corecore