395 research outputs found

    European lessons for Green and Blue Services in The Netherlands

    Get PDF
    Green and Blue Services were developed in The Netherlands to reward farmers for the environmental services they provide to society. Especially the first initiatives were area specific, developed together with farmers and different from the national Agri-environmental scheme. In the PLUREL case study region Haaglanden, Green and Blue Services are seen as a strategy to strengthen agriculture in the urban fringe

    The Remarkable Mid-Infrared Jet of Massive Young Stellar Object G35.20-0.74

    Full text link
    The young massive stellar object G35.20-0.74 was observed in the mid-infrared using T-ReCS on Gemini South. Previous observations have shown that the near infrared emission has a fan-like morphology that is consistent with emission from the northern lobe of a bipolar radio jet known to be associated with this source. Mid-infrared observations presented in this paper show a monopolar jet-like morphology as well, and it is argued that the mid-infrared emission observed is dominated by thermal continuum emission from dust. The mid-infrared emission nearest the central stellar source is believed to be directly heated dust on the walls of the outflow cavity. The hydroxyl, water, and methanol masers associated with G35.20-0.74 are spatially located along these mid-infrared cavity walls. Narrow jet or outflow cavities such as this may also be the locations of the linear distribution of methanol masers that are found associated with massive young stellar objects. The fact that G35.20-0.74 has mid-infrared emission that is dominated by the outflow, rather than disk emission, is a caution to those that consider mid-infrared emission from young stellar objects as only coming from circumstellar disks.Comment: Accepted for publication in ApJ Letters; 4 pages; 2 figures; a version with full resolution images is available here: http://www.ctio.noao.edu/~debuizer

    A Multiwavelength Study of Young Massive Star-Forming Regions. III. Mid-Infrared Emission

    Full text link
    We present mid-infrared (MIR) observations, made with the TIMMI2 camera on the ESO 3.6 m telescope, toward 14 young massive star-forming regions. All regions were imaged in the N band, and nine in the Q band, with an angular resolution of ~ 1 arcsec. Typically, the regions exhibit a single or two compact sources (with sizes in the range 0.008-0.18 pc) plus extended diffuse emission. The Spitzer-Galactic Legacy Infrared Mid-Plane Survey Extraordinaire images of these regions show much more extended emission than that seen by TIMMI2, and this is attributed to polycyclic aromatic hydrocarbon (PAH) bands. For the MIR sources associated with radio continuum radiation (Paper I) there is a close morphological correspondence between the two emissions, suggesting that the ionized gas (radio source) and hot dust (MIR source) coexist inside the H II region. We found five MIR compact sources which are not associated with radio continuum emission, and are thus prime candidates for hosting young massive protostars. In particular, objects IRAS 14593-5852 II (only detected at 17.7 microns) and 17008-4040 I are likely to be genuine O-type protostellar objects. We also present TIMMI2 N-band spectra of eight sources, all of which are dominated by a prominent silicate absorption feature (~ 9.7 microns). From these data we estimate column densities in the range (7-17)x10^22 cm^-2, in good agreement with those derived from the 1.2 mm data (Paper II). Seven sources show bright [Ne II] line emission, as expected from ionized gas regions. Only IRAS 123830-6128 shows detectable PAH emission at 8.6 and 11.3 microns.Comment: Published in ApJ. 15 pages, 6 figures. Formatted with emulateapj; v2: Minor language changes to match the published versio

    Trigonometric Parallaxes of Massive Star Forming Regions: IV. G35.20-0.74 and G35.20-1.74

    Full text link
    We report trigonometric parallaxes for the high-mass star forming regions G35.20-0.74 and G35.20-1.74, corresponding to distances of 2.19 (+0.24 -0.20) kpc and 3.27 (+0.56 -0.42) kpc, respectively. The distances to both sources are close to their near kinematic distances and place them in the Carina-Sagittarius spiral arm. Combining the distances and proper motions with observed radial velocities gives the locations and full space motions of the star forming regions. Assuming a standard model of the Galaxy, G35.20-0.74 and G35.20-1.74 have peculiar motions of ~13 km/s and ~16 km/s counter to Galactic rotation and ~9 km/s toward the North Galactic Pole.Comment: 16 pages, 8 figure

    A sub-arcsecond study of the hot molecular core in G023.01-00.41

    Full text link
    (Abridged) METHODS: We performed SMA observations at 1.3 mm with both the most extended and compact array configurations, providing sub-arcsecond and high sensitivity maps of various molecular lines, including both hot-core and outflow tracers. We also reconstruct the spectral energy distribution of the region from millimeter to near infrared wavelengths, using the Herschel/Hi-GAL maps, as well as archival data. RESULTS: From the spectral energy distribution, we derive a bolometric luminosity of about 4x10^4 Lsun. Our interferometric observations reveal that the distribution of dense gas and dust in the HMC is significantly flattened and extends up to a radius of 8000 AU from the center of radio continuum and maser emission in the region. The equatorial plane of this HMC is strictly perpendicular to the elongation of the collimated bipolar outflow, as imaged on scales of about 0.1-0.5 pc in the main CO isotopomers as well as in the SiO(5-4) line. In the innermost HMC regions (ca. 1000 AU), the velocity field traced by the CH3CN(12_K-11_K) line emission shows that molecular gas is both expanding along the outflow direction following a Hubble-law, and rotating about the outflow axis, in agreement with the (3-D) velocity field traced by methanol masers. The velocity field associated with rotation indicates a dynamical mass of 19 Msun at the center of the core. The latter is likely to be concentrated in a single O9.5 ZAMS star, consistent with the estimated bolometric luminosity of G023.01-00.41. The physical properties of the CO(2-1) outflow emission, such as its momentum rate 6x10^-3 Msun km/s /yr and its outflow rate 2x10^-4 Msun/yr, support our estimates of the luminosity (and mass) of the embedded young stellar object.Comment: 24 pages, 11 figures, 6 tables, accepted by Astronomy & Astrophysic

    Mid-Infrared Imaging of the Bipolar Planetary Nebula M2-9 from SOFIA

    Full text link
    We have imaged the bipolar planetary nebula M2-9 using SOFIA's FORCAST instrument in six wavelength bands between 6.6 and 37.1 μm\mu m. A bright central point source, unresolved with SOFIA's ∼\sim 4′′{''}-to-5′′{''} beam, is seen at each wavelength, and the extended bipolar lobes are clearly seen at 19.7 μm\mu m and beyond. The photometry between 10 and 25 μm\mu m is well fit by the emission predicted from a stratified disk seen at large inclination, as has been proposed for this source by Lykou et al and by Smith and Gehrz. The principal new results in this paper relate to the distribution and properties of the dust that emits the infrared radiation. In particular, a considerable fraction of this material is spread uniformly through the lobes, although the dust density does increase at the sharp outer edge seen in higher resolution optical images of M2-9. The dust grain population in the lobes shows that small ( 1 μm\mu m) particles appear to be present in roughly equal amounts by mass. We suggest that collisional processing within the bipolar outflow plays an important role in establishing the particle size distribution.Comment: 40 pages, 9 figures, 2 table
    • …
    corecore