9 research outputs found

    The influence of external factors on bacteriophages—review

    Get PDF
    The ability of bacteriophages to survive under unfavorable conditions is highly diversified. We summarize the influence of different external physical and chemical factors, such as temperature, acidity, and ions, on phage persistence. The relationships between a phage’s morphology and its survival abilities suggested by some authors are also discussed. A better understanding of the complex problem of phage sensitivity to external factors may be useful not only for those interested in pharmaceutical and agricultural applications of bacteriophages, but also for others working with phages

    A Template-Dependent Dislocation Mechanism Potentiates K65R Reverse Transcriptase Mutation Development in Subtype C Variants of HIV-1

    Get PDF
    Numerous studies have suggested that the K65R reverse transcriptase (RT) mutation develops more readily in subtype C than subtype B HIV-1. We recently showed that this discrepancy lies partly in the subtype C template coding sequence that predisposes RT to pause at the site of K65R mutagenesis. However, the mechanism underlying this observation and the elevated rates of K65R development remained unknown. Here, we report that DNA synthesis performed with subtype C templates consistently produced more K65R-containing transcripts than subtype B templates, regardless of the subtype-origin of the RT enzymes employed. These findings confirm that the mechanism involved is template-specific and RT-independent. In addition, a pattern of DNA synthesis characteristic of site-specific primer/template slippage and dislocation was only observed with the subtype C sequence. Analysis of RNA secondary structure suggested that the latter was unlikely to impact on K65R development between subtypes and that Streisinger strand slippage during DNA synthesis at the homopolymeric nucleotide stretch of the subtype C K65 region might occur, resulting in misalignment of the primer and template. Consequently, slippage would lead to a deletion of the middle adenine of codon K65 and the production of a -1 frameshift mutation, which upon dislocation and realignment of the primer and template, would lead to development of the K65R mutation. These findings provide additional mechanistic evidence for the facilitated development of the K65R mutation in subtype C HIV-1

    Effects of Limiting Homology at the Site of Intermolecular Recombinogenic Template Switching during Moloney Murine Leukemia Virus Replication

    No full text
    A Moloney murine leukemia virus-based single-replication-cycle assay was developed to study the effects of limiting the extent of template and primer strand complementarity on recombinogenic template switching. This system mimicked forced copy choice recombination in which nascent DNA transfers from the end of a donor template to an acceptor position on the other copackaged RNA. When acceptor target regions with different extents of complementarity to the transferring DNA were tested, efficient recombination occurred with as few as 14 complementary nucleotides. The frequencies of correct targeting, transfer-associated errors, mismatch extension, and transfer before reaching the end of the donor template were determined. All four molecular events occurred, with their proportions varying depending on the nature of acceptor/transferring DNA complementarity. When complementarity was severely limited, recombination was inefficient and most products resulted from aberrant second-strand transfer rather than from forced template switching between RNAs. Other classes of reverse transcription products, including some that resulted from template switching between virus and host sequences, were also observed when homology between the acceptor and donor was limited

    Review

    No full text
    corecore