2,922 research outputs found

    On the variance of sums of arithmetic functions over primes in short intervals and pair correlation for L-functions in the Selberg class

    Get PDF
    We establish the equivalence of conjectures concerning the pair correlation of zeros of LL-functions in the Selberg class and the variances of sums of a related class of arithmetic functions over primes in short intervals. This extends the results of Goldston & Montgomery [7] and Montgomery & Soundararajan [11] for the Riemann zeta-function to other LL-functions in the Selberg class. Our approach is based on the statistics of the zeros because the analogue of the Hardy-Littlewood conjecture for the auto-correlation of the arithmetic functions we consider is not available in general. One of our main findings is that the variances of sums of these arithmetic functions over primes in short intervals have a different form when the degree of the associated LL-functions is 2 or higher to that which holds when the degree is 1 (e.g. the Riemann zeta-function). Specifically, when the degree is 2 or higher there are two regimes in which the variances take qualitatively different forms, whilst in the degree-1 case there is a single regime

    Model Counting for Formulas of Bounded Clique-Width

    Full text link
    We show that #SAT is polynomial-time tractable for classes of CNF formulas whose incidence graphs have bounded symmetric clique-width (or bounded clique-width, or bounded rank-width). This result strictly generalizes polynomial-time tractability results for classes of formulas with signed incidence graphs of bounded clique-width and classes of formulas with incidence graphs of bounded modular treewidth, which were the most general results of this kind known so far.Comment: Extended version of a paper published at ISAAC 201

    Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Get PDF
    In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L<sup>−1</sup> effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics) actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed

    Advanced Multilevel Node Separator Algorithms

    Full text link
    A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively

    Bayesian signaling game based efficient security model for MANETs

    Get PDF
    Game Theory acts as a suitable tool offering promising solutions to security-related concerns in Mobile Ad Hoc Networks (i.e., MANETs). In MANETs, security forms a prominent concern as it includes nodes which are usually portable and require significant coordination between them. Further, the absence of physical organisation makes such networks susceptible to security breaches, hindering secure routing and execution among nodes. Game Theory approach has been manipulated in the current study to achieve an analytical view while addressing the security concerns in MANETs. This paper offers a Bayesian-Signaling game model capable of analysing the behaviour associated with regular as well as malicious nodes. In the proposed model, the utility of normal nodes has been increased while reducing the utility linked to malicious nodes. Moreover, the system employs a reputation system capable of stimulating best cooperation between the nodes. The regular nodes record incessantly to examine their corresponding nodes’ behaviours by using the belief system of Bayes-rules. On its comparison with existing schemes, it was revealed that the presented algorithm provides better identification of malicious nodes and attacks while delivering improved throughput and reduced false positive rate

    Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.

    Get PDF
    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy

    Impact of reactor configurations on the performance of a granular anaerobic membrane bioreactor for municipal wastewater treatment

    Full text link
    © 2017 Elsevier Ltd This study compared overall performance of an external granular anaerobic membrane bioreactor and a submerged granular anaerobic membrane bioreactor (EG-AnMBR and SG-AnMBR, respectively), to determine which type of G-AnMBRs is more preferred for municipal wastewater treatment. Both systems presented similar COD removal efficiencies (over 91%) and methane yield of 160 mL CH4 (STP) (g COD removed)−1 although volatile fatty acids (VFA) accumulation was found in the SG-AnMBR. Membrane direct incorporation into the SG-AnMBR significantly affected the concentration and properties of microbial products (e.g. soluble microbial products (SMP) and extracellular polymeric substances (EPS)) in the cake layer, mixed liquor and granular sludge, as well as granular sludge size and settleability. The EG-AnMBR demonstrated less SMP and EPS in the mixed liquor and cake layer, which might reduce the cake layer resistance and lower the fouling rate. Liquid chromatography-organic carbon detection (LC-OCD) analysis of foulant revealed that biopolymers along with low molecular weight neutrals and acids and building blocks were responsible for higher fouling propensity in the SG-AnMBR. It is evident that compared to the SG-AnMBR, the EG-AnMBR serves as a better G-AnMBR configuration for municipal wastewater treatment due to less fouling propensity and superior granule quality

    Exporting Vector Muscles for Facial Animation

    Get PDF
    In this paper we introduce a method of exporting vector muscles from one 3D face to another for facial animation. Starting from a 3D face with an extended version of Waters' linear muscle system, we transfer the linear muscles to a target 3D face. We also transfer the region division, which is used to increase the performance of the muscle as well as to control the animation. The human involvement is just as simple as selecting the faces which shows the most natural facial expressions in the animator's view. The method allows the transfer of the animation to a new 3D model within a short time. The transferred muscles can then be used to create new animations
    corecore