4 research outputs found
A42F-03: Small-Scale Variability in Tropical Tropopause Layer Humidity
Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment (ATTREX) over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about minus 5 divided by 3, to minus 2
Ice Nucleation and Dehydration in the Tropical Tropopause Layer
Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L1 (often less than 20 L1), whereas the high ice concentration layers (with concentrations up to 10,000 L1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio
Physical Processes Controlling the Distribution of Relative Humidity in the Tropical Tropopause Layer over the Pacific
The distribution of relative humidity with respect to ice (RHI) in the Boreal wintertime Tropical Tropopause Layer (TTL - about 14-19 km) over the Pacific is examined with the extensive dataset of measurements from the NASA Airborne Tropical TRopopause EXperiment (ATTREX). Multiple deployments of the Global Hawk during ATTREX provided hundreds of vertical profiles spanning the Pacific with accurate measurements of temperature, pressure, water vapor concentration, ozone concentration, and cloud properties. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower TTL (temperatures greater than 200 K) and in airmasses with low ozone concentrations indicating recent detrainment from deep convection; (2) low RHI values in the lower TTL over the eastern Pacific where deep convection is infrequent; (3) RHI values following a constant H2O mixing ratio in the upper TTL (temperatures below about 195 degrees Kelvin), particularly for samples with ozone mixing ratios greater than about 50-100 parts-per-billion-volume indicating mixtures of tropospheric and stratospheric air, and (4) RHI values typically near ice saturation in the coldest airmasses sampled (temperatures less than about 190 degrees Kelvin). We find that the typically saturated air in the lower TTL over the western Pacific is largely driven by the frequent occurrence of deep convection in this region. The nearly-constant water vapor mixing ratios in the upper TTL result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability on a range of time scales (resulting in most air parcels having experienced low temperature and dehydration)
Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2023; obspack_co2_1_GLOBALVIEWplus_v10.0_2024-09-26
This product is constructed using the Observation Package (ObsPack) framework [Masarie et al., 2014; www.earth-syst-sci-data.net/6/375/2014/]. The framework is designed to bring together atmospheric greenhouse gas (GHG) observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. ObsPack products are intended to support GHG budget studies and represent a new generation of cooperative value-added GHG data products. This product includes 625 atmospheric carbon dioxide datasets derived from observations made by 79 laboratories from 28 countries. Data for the period 1957-2023 (where available) are included