37 research outputs found

    Chemokine ligand-receptor interactions critically regulate cutaneous wound healing

    Get PDF
    Background: Wound healing represents a dynamic process involving directional migration of different cell types. Chemokines, a family of chemoattractive proteins, have been suggested to be key players in cell-to-cell communication and essential for directed migration of structural cells. Today, the role of the chemokine network in cutaneous wound healing is not fully understood. Unraveling the chemokine-driven communication pathways in this complex process could possibly lead to new therapeutic strategies in wound healing disorders. Methods: We performed a systematic, comprehensive time-course analysis of the expression and function of a broad variety of cytokines, growth factors, adhesion molecules, matrixmetalloproteinases and chemokines in a murine cutaneous wound healing model. Results: Strikingly, chemokines were found to be among the most highly regulated genes and their expression was found to coincide with the expression of their matching receptors. Accordingly, we could show that resting and activated human primary keratinocytes (CCR3, CCR4, CCR6, CXCR1, CXCR3), dermal fibroblasts (CCR3, CCR4, CCR10) and dermal microvascular endothelial cells (CCR3, CCR4, CCR6, CCR8, CCR9, CCR10, CXCR1, CXCR2, CXCR3) express a distinct and functionally active repertoire of chemokine receptors. Furthermore, chemokine ligand-receptor interactions markedly improved the wound repair of structural skin cells in vitro. Conclusion: Taken together, we here present the most comprehensive analysis of mediators critically involved in acute cutaneous wound healing. Our findings suggest therapeutic approaches for the management of wound closure by targeting the chemokine network

    Correction to: EGFR/Ras-induced CCL20 production modulates the tumour microenvironment

    Get PDF
    The article ‘EGFR/Ras-induced CCL20 production modulates the tumour microenvironment’, written by Andreas Hippe, Stephan Alexander Braun, PĂ©ter OlĂĄh, Peter Arne Gerber, Anne Schorr, Stephan Seeliger, Stephanie Holtz, Katharina Jannasch, Andor Pivarcsi, Bettina Buhren, Holger Schrumpf, Andreas Kislat, Erich BĂŒnemann, Martin Steinhoff, Jens Fischer, SĂ©rgio A. Lira, Petra Boukamp, Peter Hevezi, Nikolas Hendrik Stoecklein, Thomas Hoffmann, Frauke Alves, Jonathan Sleeman, Thomas Bauer, Jörg Klufa, Nicole Amberg, Maria Sibilia, Albert Zlotnik, Anja MĂŒller- Homey and Bernhard Homey, was originally published electronically on the publisher’s internet portal on 30 June 2020 without open access. With the author(s)’ decision to opt for Open Choice the copyright of the article changed on 16 September 2021 to © The Author(s) 2021 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/. Open Access funding enabled and organized by Projekt DEAL

    Standardized in vitro analysis of the degradability of hyaluronic acid fillers by hyaluronidase

    No full text
    Abstract Background Hyaluronidase is a hyaluronic acid (HA) metabolizing enzyme, which is approved as an adjuvant for infiltration anesthesia. The “off-label” use of hyaluronidase is regarded as gold standard for the management of HA-filler-associated complications. Yet, up to date there are only few studies that have systematically assessed the degradability of different HA-fillers by hyaluronidase. Objective To analyze the interactions of HA-fillers and hyaluronidase in a time-dependent manner using a novel standardized in vitro approach. Methods Comparable HA-fillers, Belotero Balance Lidocaine (BEL; Merz), Emervel classic (EMV; Galderma) and Juvederm Ultra 3 (JUV; Allergan), were incubated with a fluorescent dye and bovine hyaluronidase (HYAL; Hylase “Dessau”, Riemser) or control (NaCl) and monitored by time-lapse videomicroscopy. The degradation of HA-fillers was assessed as decrease in fluorescence intensity of HA-filler plus hyaluronidase vs. HA-filler plus control, quantified by computer-assisted image analysis (ImageJ). Results Hyaluronidase showed a significant degradation of the HA-fillers BEL and EMV. Degradation was measurable at 5 h (BEL) and 7 h (EMV), respectively; significance was reached at 14 h (BEL) and 13 h (EMV). No effect of hyaluronidase was observed for JUV. Conclusion Time-lapse microscopy enables systematically, standardized, comparative in vitro analyses of the interactions of hyaluronidase and HA-fillers

    Ingenol mebutate induces a tumor cell-directed inflammatory response and antimicrobial peptides thereby promoting rapid tumor destruction and wound healing

    No full text
    Abstract Background Ingenol mebutat (IM)-gel is effective for the topical treatment of epithelial tumors, including actinic keratoses (AKs) or anogenital warts (AGW). AK patients treated with IM develop intensified inflammatory reactions on sights of prior clinical visible or palpable AKs as compared to the surrounding actinically damaged skin, suggesting the induction of a tumor cell-directed inflammation. AGW patients treated with IM develop even stronger inflammatory reactions with large erosions, suggesting a directed inflammatory response against HPV-infected keratinocytes. Of note, even widespread erosions heal very fast without any superinfections. Here, we set out to elucidate underlying molecular and cellular mechanisms of these clinical observations. Methods The effects of IM (10−9–10−5 M) on the expression and translation of a comprehensive set of chemokines (CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, CXCL14, CCL2, CCL5, CCL20, CCL27) and antimicrobial peptides (AMP) (HBD1, HBD2, HBD3, LL37, RNase7) were analyzed in primary human epithelial keratinocytes (HEK) and a set of epithelial cancer cell lines by RT-qPCR and ELISA in vitro. To study the possible effects of different concentrations of IM on migratory, respectively wound healing responses, an in vitro scratch assay was conducted on HEK. Results Ingenol mebutat significantly and dose-dependently induced the expression of proinflammatory chemokines (CXCL8, CCL2) and AMP (RNase7, HBD3) in HEK and epithelial cancer cell lines. A significantly stronger induction of CXCL8 and CCL2 was observed in our tested tumor cells as compared to HEK. We did not observe any significant effect of IM on HEK migration, respectively wound healing responses in vitro for any tested concentration (10−9, 10−8, 10−6 M) except 10−7 M, which induced a significant inhibition. Conclusions Our data suggest that tumor cells are more susceptible to IM as compared to differentiated HEK. This is evident by a stronger IM-mediated induction of proinflammatory chemokines in tumor cells, which may result in a tumor cell-directed inflammatory response and rapid tumor destruction. In addition, IM induces AMP in keratinocytes and seems not to severely interfere with keratinocyte migration, which contributes to a fast and uncomplicated wound healing. Surprising is a selective inhibition of keratinocyte migration by IM at the concentration of 10−7 M pointing to very dose depending biological effects, induced by IM

    Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning

    No full text
    Eccentric exercise training is effective for increasing muscle mass and strength, and improving insulin sensitivity and blood lipid profiles. However, potential muscle damage symptoms such as prolonged loss of muscle function and delayed onset of muscle soreness may restrict the use of eccentric exercise, especially in clinical populations. Therefore, strategies to reduce eccentric exercise-induced muscle damage (EIMD) are necessary, and an extensive number of scientific studies have tried to identify potential intervention modalities to perform eccentric exercises without adverse effects. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which an ischemic preconditioning (IPC) of the extremities may reduce EIMD. IPC consists of an intermittent application of short-time non-lethal ischemia to an extremity (e.g. using a tourniquet) followed by reperfusion and was discovered in clinical settings in an attempt to minimize inflammatory responses induced by ischemia and ischemia-reperfusion-injury (I/R-Injury) during surgery. The present hypothesis is based on morphological and biochemical similarities in the pathophysiology of skeletal muscle damage during clinical surgery and EIMD. Even though the primary origin of stress differs between I/R-Injury and EIMD, subsequent cellular alterations characterized by an intracellular accumulation of Ca2+, an increased production of reactive oxygen species or increased apoptotic signaling are essential elements for both. Moreover, the incipient immune response appears to be similar in I/R-Injury and EIMD, which is indicated by an infiltration of leukocytes into the damaged soft-tissue. Thus far, IPC is considered as a potential intervention strategy in the area of cardiovascular or orthopedic surgery and provides significant impact on soft-tissue protection and downregulation of undesired excessive inflammation induced by I/R-Injury. Based on the known major impact of IPC on skeletal muscle physiology and immunology, the present paper aims to illustrate the potential protective effects of IPC on EIMD by discussing possible underlying mechanisms

    Dose- and time-dependent effects of hyaluronidase on structural cells and the extracellular matrix of the skin

    No full text
    Introduction!#!Hyaluronic acid (hyaluronan; HA) is an essential component of the extracellular matrix (ECM) of the skin. The HA-degrading enzyme hyaluronidase (HYAL) is critically involved in the HA-metabolism. Yet, only little information is available regarding the skin's HA-HYAL interactions on the molecular and cellular levels.!##!Objective!#!To analyze the dose- and time-dependent molecular and cellular effects of HYAL on structural cells and the HA-metabolism in the skin.!##!Materials and methods!#!Chip-based, genome-wide expression analyses (Affymetrix¼ GeneChip PrimeViewℱ Human Gene Expression Array), quantitative real-time PCR analyses, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (DAB), and in vitro wound healing assays were performed to assess dose-dependent and time-kinetic effects of HA and HYAL (bovine hyaluronidase, Hylase 'Dessau') on normal human dermal fibroblasts (NHDF), primary human keratinocytes in vitro and human skin samples ex vivo.!##!Results!#!Genome-wide expression analyses revealed an upregulation of HA synthases (HAS) up to 1.8-fold change in HA- and HYAL-treated NHDF. HA and HYAL significantly accelerated wound closure in an in vitro model for cutaneous wound healing. HYAL induced HAS1 and HAS2 mRNA gene expression in NHDF. Interestingly, low concentrations of HYAL (0.015 U/ml) resulted in a significantly higher induction of HAS compared to moderate (0.15 and 1.5 U/ml) and high concentrations (15 U/ml) of HYAL. This observation corresponded to increased concentrations of HA measured by ELISA in conditioned supernatants of HYAL-treated NHDF with the highest concentrations observed for 0.015 U/ml of HYAL. Finally, immunohistochemical analysis of human skin samples incubated with HYAL for up to 48 h ex vivo demonstrated that low concentrations of HYAL (0.015 U/ml) led to a pronounced accumulation of HA, whereas high concentrations of HYAL (15 U/ml) reduced dermal HA-levels.!##!Conclusion!#!HYAL is a bioactive enzyme that exerts multiple effects on the HA-metabolism as well as on the structural cells of the skin. Our results indicate that HYAL promotes wound healing and exerts a dose-dependent induction of HA-synthesis in structural cells of the skin. Herein, interestingly the most significant induction of HAS and HA were observed for the lowest concentration of HYAL
    corecore