119 research outputs found
Topological spin Hall effect in antiferromagnetic skyrmions
The topological Hall effect (THE), as one of the primary manifestations of
non-trivial topology of chiral skyrmions, is traditionally used to detect the
emergence of skyrmion lattices with locally ferromagnetic order. In this work
we demonstrate that the appearance of non-trivial two-dimensional chiral
textures with locally {\it anti}-ferromagnetic order can be detected through
the spin version of the THE the topological spin Hall effect (TSHE).
Utilizing the semiclassical formalism, here used to combine chiral
antiferromagnetic textures with a density functional theory description of the
collinear, degenerate electronic structure, we follow the real-space real-time
evolution of electronic SU(2) wavepackets in an external electric field to
demonstrate the emergence of sizeable transverse pure spin current in synthetic
antiferromagnets of the Fe/Cu/Fe trilayer type. We further unravel the extreme
sensitivity of the TSHE to the details of the electronic structure, suggesting
that the magnitude and sign of the TSHE in transition-metal synthetic
antiferromagnets can be engineered by tuning such parameters as the thickness
or band filling. Besides being an important step in our understanding of the
topological properties of ever more complex skyrmionic systems, our results
bear great potential in stimulating the discovery of antiferromagnetic
skyrmions
Surface orbitronics: new twists from orbital Rashba physics
When the inversion symmetry is broken at a surface, spin-orbit interaction
gives rise to spin-dependent energy shifts - a phenomenon which is known as the
spin Rashba effect. Recently, it has been recognized that an orbital
counterpart of the spin Rashba effect - the orbital Rashba effect - can be
realized at surfaces even without spin- orbit coupling. Here, we propose a
mechanism for the orbital Rashba effect based on sp orbital hybridization,
which ultimately leads to the electric polarization of surface states. As a
proof of principle, we show from first principles that this effect leads to
chiral orbital textures in -space of the BiAg monolayer. In
predicting the magnitude of the orbital moment arising from the orbital Rashba
effect, we demonstrate the crucial role that the Berry phase theory plays for
the magnitude and variation of the orbital textures. As a result, we predict a
pronounced manifestation of various orbital effects at surfaces, and proclaim
the orbital Rashba effect to be a key platform for surface orbitronics
Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets
The concepts of Weyl fermions and topological semimetals emerging in
three-dimensional momentum space are extensively explored owing to the vast
variety of exotic properties that they give rise to. On the other hand, very
little is known about semimetallic states emerging in two-dimensional magnetic
materials, which present the foundation for both present and future information
technology. Here, we demonstrate that including the magnetization direction
into the topological analysis allows for a natural classification of
topological semimetallic states that manifest in two-dimensional ferromagnets
as a result of the interplay between spin-orbit and exchange interactions. We
explore the emergence and stability of such mixed topological semimetals in
realistic materials, and point out the perspectives of mixed topological states
for current-induced orbital magnetism and current-induced domain wall motion.
Our findings pave the way to understanding, engineering and utilizing
topological semimetallic states in two-dimensional spin-orbit ferromagnets
SlgA, the homologue of the human schizophrenia associated PRODH gene, acts in clock neurons to regulate <i>Drosophila </i>aggression
Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders
Diatoms Reduce Decomposition of and Fungal Abundance on Less Recalcitrant Leaf Litter via Negative Priming
Heterotrophic microbial decomposers colonize submerged leaf litter in close spatial proximity to periphytic algae that exude labile organic carbon during photosynthesis. These exudates are conjectured to affect microbial decomposers' abundance, resulting in a stimulated (positive priming) or reduced (negative priming) leaf litter decomposition. Yet, the occurrence, direction, and intensity of priming associated with leaf material of differing recalcitrance remains poorly tested. To assess priming, we submerged leaf litter of differing recalcitrance (Alnus glutinosa [alder; less recalcitrant] and Fagus sylvatica [beech; more recalcitrant]) in microcosms and quantified bacterial, fungal, and diatom abundance as well as leaf litter decomposition over 30 days in absence and presence of light. Diatoms did not affect beech decomposition but reduced alder decomposition by 20% and alder-associated fungal abundance by 40% in the treatments including all microbial groups and light, thus showing negative priming. These results suggest that alder-associated heterotrophs acquired energy from diatom exudates rather than from leaf litter. Moreover, it is suggested that these heterotrophs have channeled energy to alternative (reproductive) pathways that may modify energy and nutrient availability for the remaining food web and result in carbon pools protected from decomposition in light-exposed stream sections
Toward surface orbitronics: giant orbital magnetism from the orbital Rashba effect at the surface of sp-metals
As the inversion symmetry is broken at a surface, spin-orbit interaction gives rise to spin-dependent energy shifts – a phenomenon which is known as the spin Rashba effect. Recently, it has been recognized that an orbital counterpart of the spin Rashba effect – the orbital Rashba effect – can be realized at surfaces even without spin-orbit coupling. Here, we propose a mechanism for the orbital Rashba effect based on sp orbital hybridization, which ultimately leads to the electric polarization of surface states. For the experimentally well-studied system of a BiAg2 monolayer, as a proof of principle, we show from first principles that this effect leads to chiral orbital textures in k-space. In predicting the magnitude of the orbital moment arising from the orbital Rashba effect, we demonstrate the crucial role played by the Berry phase theory for the magnitude and variation of the orbital textures. As a result, we predict a pronounced manifestation of various orbital effects at surfaces, and proclaim the orbital Rashba effect to be a key platform for surface orbitronics.116sciescopu
Imprinting and driving electronic orbital magnetism using magnons
Magnons, as the most elementary excitations of magnetic materials, have
recently emerged as a prominent tool in electrical and thermal manipulation and
transport of spin, and magnonics as a field is considered as one of the pillars
of modern spintronics. On the other hand, orbitronics, which exploits the
orbital degree of freedom of electrons rather than their spin, emerges as a
powerful platform in efficient design of currents and redistribution of angular
momentum in structurally complex materials. Here, we uncover a way to bridge
the worlds of magnonics and electronic orbital magnetism, which originates in
the fundamental coupling of scalar spin chirality, inherent to magnons, to the
orbital degree of freedom in solids. We show that this can result in efficient
generation and transport of electronic orbital angular momentum by magnons,
thus opening the road to combining the functionalities of magnonics and
orbitronics to their mutual benefit in the realm of spintronics applications.Comment: 9 pages, 5 figures. arXiv admin note: substantial text overlap with
arXiv:1910.0331
Symmetry and topology in antiferromagnetic spintronics
Antiferromagnetic spintronics focuses on investigating and using
antiferromagnets as active elements in spintronics structures. Last decade
advances in relativistic spintronics led to the discovery of the staggered,
current-induced field in antiferromagnets. The corresponding N\'{e}el
spin-orbit torque allowed for efficient electrical switching of
antiferromagnetic moments and, in combination with electrical readout, for the
demonstration of experimental antiferromagnetic memory devices. In parallel,
the anomalous Hall effect was predicted and subsequently observed in
antiferromagnets. A new field of spintronics based on antiferromagnets has
emerged. We will focus here on the introduction into the most significant
discoveries which shaped the field together with a more recent spin-off
focusing on combining antiferromagnetic spintronics with topological effects,
such as antiferromagnetic topological semimetals and insulators, and the
interplay of antiferromagnetism, topology, and superconductivity in
heterostructures.Comment: Book chapte
Impact of donor lung quality on post-transplant recipient outcome in the Lung Allocation Score era in Eurotransplant - a historical prospective study
The aim of this study was to investigate whether there is an impact of donation rates on the quality of lungs used for transplantation and whether donor lung quality affects post-transplant outcome in the current LAS era. All consecutive adult LTx performed in Eurotransplant (ET) between January 2012 and December 2016 were included (N=3053). Donors used for LTx in countries with high donation rate were younger (42% vs. 33% ≤ 45 years, p<0.0001), were less often smokers (35% vs. 46%, p<0.0001), had more often clear chest X-rays (82% vs. 72%, p<0.0001), had better donor oxygenation ratio's (20% vs. 26% with PaO /FiO ≤ 300 mmHg, p<0.0001) and had better lung donor score values (LDS) (28% vs. 17% with LDS=6, p<0.0001) compared to donors used for LTx in countries with low donation rate. Survival rates for the groups LDS =6 and ≥7 at 5 years were 69.7% and 60.9% (p=0.007). Lung donor quality significantly impacts on long-term patient survival. Countries with a low donation rate are more oriented to using donor lungs with a lesser quality compared to countries with a high donation rate. Instead of further stretching donor eligibility criteria, the full potential of the donor pool should be realized
BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection
Background Clostridium difficile infection (CDI) is a major cause of hospital-acquired diarrhea. Secondary bile acids were shown to confer resistance to colonization by C. difficile. 7 alpha-dehydroxylation is a key step in transformation of primary to secondary bile acids and required genes have been located in a single bile acid-inducible (bai) operon in C. scindens as well as in C. hiranonis, two Clostridium sp. recently reported to protect against C. difficile colonization. Aim To analyze baiCD gene abundance in C. difficile positive and negative fecal samples. Material & methods A species-specific qPCR for detecting baiCD genes was established. Fecal samples of patients with CDI, asymptomatic toxigenic C. difficile colonization (TCD), non-toxigenic C. difficile colonization (NTCD), of C. difficile negative (NC) patients, and of two patients before and after fecal microbiota transplantation (FMT) for recurrent CDI (rCDI) were tested for the presence of the baiCD genes. Results The prevalence of the baiCD gene cluster was significantly higher in C. difficile negative fecal samples than in samples of patients diagnosed with CDI (72.5% (100/138) vs. 35.9% (23/64;p<0.0001). No differences in baiCD gene cluster prevalence were seen between NC and NTCD or NC and TCD samples. Both rCDI patients were baiCD-negative at baseline, but one of the two patients turned positive after successful FMT from a baiCD-positive donor. Conclusion Fecal samples of CDI patients are less frequently baiCD-positive than samples from asymptomatic carriers or C. difficile-negative individuals. Furthermore, we present a case of baiCD positivity observed after successful FMT for rCDI
- …