20 research outputs found

    FcγRIIB1 Inhibition of BCR-Mediated Phosphoinositide Hydrolysis and Ca2+ Mobilization Is Integrated by CD19 Dephosphorylation

    Get PDF
    AbstractThe B cell receptor for immunoglobulin G, FcγRIIB1, is a potent transducer of signals that block antigen-induced B cell activation. Coligation of FcγRIIB1 with B lymphocyte antigen receptors (BCR) causes premature termination of phosphoinositide hydrolysis and Ca2+ mobilization and inhibits proliferation. This inhibitory signal is mediated in part by phosphorylation of FcγRIIB1 and recruitment of phosphatases; however, the molecular target(s) of effectors is unknown. Here we report that FcγRIIB1 inhibition of BCR signaling is mediated in part by selective dephosphorylation of CD19, a BCR accessory molecule and coreceptor. CD19 dephosphorylation leads to failed CD19 association with phosphatidylinositol 3-kinase, and this in turn leads to termination of inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and Ca2+ influx. The results define a molecular circuit by which FcγRIIB signals block phosphoinositide hydrolysis

    Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes

    Get PDF
    BACKGROUND: Local inflammation may progress into systemic inflammation. To increase our understanding of the basic immunological processes during transition of equine local inflammation into a systemic state, investigation into the equine systemic immune response to local inflammation is warranted. Therefore, the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes was measured in whole blood leukocytes from 6 horses in an experimental cross-over model of lipopolysaccharide- (LPS-) induced acute synovitis (3 μg LPS intraarticularly; locally inflamed [LI] horses) and endotoxemia (1 μg LPS/kg intravenously; systemically inflamed [SI] horses). Multiple clinical and hematological/biochemical examinations were performed, and serial blood samples were analyzed by reverse transcription quantitative real-time PCR. Post-induction expression profiles of all genes were compared between study groups using principal component analysis (PCA) and hierarchical clustering. RESULTS: Moderate synovitis and mild systemic inflammation of approximately 24 h duration was confirmed by clinical and paraclinical observations in LI and SI horses, respectively. In the LI group, samples obtained 3–16 h post-injection showed distinct clustering in the PCA compared with baseline levels, indicating a transcriptional response to local inflammation in PBLs in this time interval. There was no clinical or hematological indication of actual systemic inflammation. There was a clear separation of all LI samples from all SI samples in two distinct clusters, indicating that expression profiles in the two study groups were different, independent of time since LPS injection. Co-regulated genes formed four clusters across study groups which were distinctly differently regulated. Only few of individual genes displayed different expression between the study groups at all times after LPS injection. CONCLUSIONS: Local inflammation in horses initiated an innate transcriptional response in PBLs, which differed from the transcriptional response during the early phase of systemic inflammation. This study may provide new insights into the immunobiology of PBLs during the transition of local inflammation into a systemic state. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-016-0706-8) contains supplementary material, which is available to authorized users

    OPPONENT

    No full text
    Antigen interaction with B cells in two proliferative disorder
    corecore