682 research outputs found

    The Impact of Dysmetabolic Sarcopenia Among Insulin Sensitive Tissues: A Narrative Review

    Get PDF
    Sarcopenia is a common muscular affection among elderly individuals. More recently, it has been recognized as the skeletal muscle (SM) expression of the metabolic syndrome. The prevalence of sarcopenia is increasing along with visceral obesity, to which it is tightly associated. Nonetheless, it is a still underreported entity by clinicians, despite the worsening in disease burden and reduced patient quality of life. Recognition of sarcopenia is clinically challenging, and variability in study populations and diagnostic methods across the clinical studies makes it hard to reach a strong evidence. Impaired insulin activity in SM is responsible for the altered molecular pathways and clinical manifestations of sarcopenia, which is morphologically expressed by myosteatosis. Lipotoxicity, oxidative stress and adipose tissue-derived inflammation lead to both alterations in glucose disposal and protein synthesis in SM, with raising insulin resistance (IR) and SM atrophy. In particular, hyperleptinemia and leptin resistance interfere directly with SM activity, but also with the release of Growth Hormone from the hypohysis, leading to a lack in its anabolic effect on SM. Moreover, sarcopenia is independently associated to liver fibrosis in Non-Alcoholic Fatty Liver Disease (NAFLD), which in turn worsens SM functionality through the secretion of proinflammatory heptokines. The cross-talk between the liver and SM in the IR setting is of crucial relevance, given the high prevalence of NAFLD and the reciprocal impact of insulin-sensitive tissues on the overall disease burden. Along with the efforts of non-invasive diagnostic approaches, irisin and myostatin are two myokines currently evaluated as potential biomarkers for diagnosis and prognostication. Decreased irisin levels seem to be potentially associated to sarcopenia, whereas increased myostatin has shown to negatively impact on sarcopenia in pre-clinical studies. Gene variants in irisin have been explored with regard to the impact on the liver disease phenotype, with conflicting results. The gut-muscle axis has gain relevance with the evidence that insulin resistance-derived gut dysbiosis is responsible for increased endotoxemia and reduction in short-chain free fatty acids, directly affecting and predisposing to sarcopenia. Based on the current evidence, more efforts are needed to increase awareness and improve the management of sarcopenic patients

    The combination of liver stiffness measurement and NAFLD fibrosis score improves the noninvasive diagnostic accuracy for severe liver fibrosis in patients with nonalcoholic fatty liver disease.

    Get PDF
    BACKGROUND & AIMS: The accuracy of noninvasive tools for the diagnosis of severe fibrosis in patients with nonalcoholic fatty liver disease(NAFLD) in clinical practice is still limited. We aimed at assessing the diagnostic performance of combined noninvasive tools in two independent cohorts of Italian NAFLD patients. METHODS: We analysed data from 321 Italian patients(179 Sicilian-training cohort, and 142 northern Italy-validation cohort) with an histological diagnosis of NAFLD. Severe fibrosis was defined as fibrosis ≥ F3 according to Kleiner classification. The APRI, AST/ALT, BARD, FIB-4, and NFS scores were calculated according to published algorithms. Liver stiffness measurement(LSM) was performed by FibroScan. Cut-off points of LSM, NFS and FIB-4 for rule-in or rule-out F3-F4 fibrosis were calculated by the reported formulas. RESULTS: In the Sicilian cohort AUCs of LSM, NFS, FIB-4, LSM plus NFS, LSM plus FIB-4, and NFS plus FIB-4 were 0.857, 0.803, 0.790, 0.878, 0.888 and 0.807, respectively, while in the northern Italy cohort the corresponding AUCs were 0.848, 0.730, 0.703, 0.844, 0.850, and 0.733 respectively. In the training cohort, the combination of LSM plus NFS was the best performing strategy, providing false positive, false negative and uncertainty area rates of 0%,1.1% and 48% respectively. Similar results were obtained in the validation cohort with false positive, false negative and uncertainty area rates of 0%,7.3% and 40.8%. CONCLUSIONS: The combination of LSM with NFS, two complementary, easy-to-perform, and widely available tools, is able to accurately diagnose or exclude the presence of severe liver fibrosis, also reducing of about 50-60% the number of needed diagnostic liver biopsies
    corecore