6 research outputs found

    Optimised Method for the Production and Titration of Lentiviral Vectors Pseudotyped with the SARS-CoV-2 Spike

    Get PDF
    The use of recombinant lentivirus pseudotyped with the coronavirus Spike protein of SARS-CoV-2 would circumvent the requirement of biosafety-level 3 (BSL-3) containment facilities for the handling of SARS-CoV-2 viruses. Herein, we describe a fast and reliable protocol for the transient production of lentiviruses pseudotyped with SARS-CoV-2 Spike (CoV-2 S) proteins and green fluorescent protein (GFP) reporters. The virus titer is determined by the GFP reporter (fluorescent) expression with a flow cytometer. High titers (>1.00 E+06 infectious units/ml) are produced using codon-optimized CoV-2 S, harbouring the prevalent D614G mutation and lacking its ER retention signal. Enhanced and consistent cell entry is achieved by using permissive HEK293T/17 cells that were genetically engineered to stably express the SARS-CoV-2 human receptor ACE2 along with the cell surface protease TMPRSS2 required for efficient fusion. For the widespread use of this protocol, its reagents have been made publicly available. Graphic abstract: Production and quantification of lentiviral vectors pseudotyped with the SARS-CoV-2 Spike glycoprotein

    Combining phage display with SMRTbell next-generation sequencing for the rapid discovery of functional scFv fragments

    Get PDF
    Phage display technology in combination with next-generation sequencing (NGS) currently is a state-of-the-art method for the enrichment and isolation of monoclonal antibodies from diverse libraries. However, the current NGS methods employed for sequencing phage display libraries are limited by the short contiguous read lengths associated with second-generation sequencing platforms. Consequently, the identification of antibody sequences has conventionally been restricted to individual antibody domains or to the analysis of single domain binding moieties such as camelid VHH or cartilaginous fish IgNAR antibodies. In this study, we report the application of third-generation sequencing to address this limitation. We used single molecule real time (SMRT) sequencing coupled with hairpin adaptor loop ligation to facilitate the accurate interrogation of full-length single-chain Fv (scFv) libraries. Our method facilitated the rapid isolation and testing of scFv antibodies enriched from phage display libraries within days following panning. Two libraries against CD160 and CD123 were panned and monitored by NGS. Analysis of NGS antibody data sets led to the isolation of several functional scFv antibodies that were not identified by conventional panning and screening strategies. Our approach, which combines phage display selection of immune libraries with the full-length interrogation of scFv fragments, is an easy method to discover functional antibodies, with a range of affinities and biophysical characteristics

    Characterisation of a novel ACE2-based therapeutic with enhanced rather than reduced activity against SARS-CoV-2 variants

    Get PDF
    The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the Coronaviridae family SARS-CoV-1 and HCoV-NL63. Here we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.1.7, B.1.351 and P.1 with affinities to the ACE2 receptor and infectivity capacity, revealing weaknesses in the developed neutralising antibody approaches. Furthermore, we report a pre-clinical characterisation package for a soluble receptor decoy engineered to be catalytically inactive and immunologically inert, with broad neutralisation capacity, that represents an attractive therapeutic alternative in light of the mutational landscape of COVID-19. This construct efficiently neutralised four SARS-CoV-2 variants of concern. The decoy also displays antibody-like biophysical properties and manufacturability, strengthening its suitability as a first-line treatment option in prophylaxis or therapeutic regimens for COVID-19 and related viral infections. IMPORTANCE Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vaccines less effective. Receptor decoy strategies utilising soluble human ACE2 may overcome the risk of viral mutational escape since mutations disrupting viral interaction with the ACE2 decoy will by necessity decrease virulence thereby preventing meaningful escape. The solution described here of a soluble ACE2 receptor decoy is significant for the following reasons: While previous ACE2-based therapeutics have been described, ours has novel features including (1) mutations within ACE2 to remove catalytical activity and systemic interference with the renin/angiotensin system; (2) abrogated FcγR engagement, reduced risk of antibody-dependent enhancement of infection and reduced risk of hyperinflammation, and (3) streamlined antibody-like purification process and scale-up manufacturability indicating that this receptor decoy could be produced quickly and easily at scale. Finally, we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralisation potency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to therapeutic mAb

    An APRIL based chimeric antigen receptor for dual targeting of BCMA and TACI in Multiple Myeloma

    Get PDF
    B-cell maturation antigen (BCMA) is a promising therapeutic target for multiple myeloma (MM), but expression is variable, and early reports of BCMA targeting chimeric antigen receptors (CARs) suggest antigen down-regulation at relapse. Dual antigen targeting increases targetable tumour antigens and reduces the risk of antigen negative disease escape. 'A proliferation-inducing ligand' (APRIL) is a natural high affinity ligand for BCMA and transmembrane activator and CAML interactor (TACI). We quantified surface tumour expression of BCMA and TACI on primary MM cells (n=50). All cases tested expressed BCMA and 39(78%) of them also expressed TACI. We engineered a third generation APRIL-based CAR (ACAR), which killed targets expressing either BCMA or TACI (p<0.01 and p<0.05 respectively, cf control, E:T ratio 16:1). We confirmed cytolysis at antigen levels similar to those on primary MM, at low effector to target ratios (56.2±3.9% killing of MM.1s at 48 hours, E:T ratio 1:32, p<0.01) and of primary MM cells (72.9±12.2% killing at 3 days, E:T ratio 1:1, p<0.05, n=5). Demonstrating tumour control in the absence of BCMA, cytolysis of primary tumour expressing both BCMA and TACI was maintained in the presence of a BCMA targeting antibody. Further, using an intramedullary myeloma model, ACAR T-cells caused regression of established tumour within 2 days. Finally, in an in vivo model of tumour escape, there was complete ACAR-mediated tumour clearance of BCMA+TACI- and BCMA-TACI+ cells while a scFv CAR targeting BCMA alone resulted in outgrowth of BCMA negative tumour. These results support the clinical potential of this approach

    Structure-guided engineering of immunotherapies targeting TRBC1 and TRBC2 in T cell malignancies

    Get PDF
    Peripheral T cell lymphomas are typically aggressive with a poor prognosis. Unlike other hematologic malignancies, the lack of target antigens to discriminate healthy from malignant cells limits the efficacy of immunotherapeutic approaches. The T cell receptor expresses one of two highly homologous chains [T cell receptor β-chain constant (TRBC) domains 1 and 2] in a mutually exclusive manner, making it a promising target. Here we demonstrate specificity redirection by rational design using structure-guided computational biology to generate a TRBC2-specific antibody (KFN), complementing the antibody previously described by our laboratory with unique TRBC1 specificity (Jovi-1) in targeting broader spectrum of T cell malignancies clonally expressing either of the two chains. This permits generation of paired reagents (chimeric antigen receptor-T cells) specific for TRBC1 and TRBC2, with preclinical evidence to support their efficacy in T cell malignancies

    Overcoming tumor antigen heterogeneity in CAR-T cell therapy for malignant mesothelioma (MM)

    No full text
    Malignant mesothelioma (MM) is a rare, aggressive solid tumor with limited therapeutic options and poor therapeutic response. The role of immunotherapy in MM is now well established and therapeutic options, such as checkpoint inhibitors, are increasingly being approved. Chimeric antigen receptor (CAR)-T cell therapy is successfully implemented in several hematologic cancers, but currently has inadequate effect in solid tumors, owing to several limitations, such as trafficking and infiltration, limited T cell persistence and exhaustion, the immunosuppressive TME and tumor antigen heterogeneity. The lack of uniform and universal expression of tumor-associated antigens (TAAs) on tumor cells, as well as TAA heterogeneity following tumor editing post-therapy, are issues of significant importance to CAR-T cell and associated antigen-targeting therapies. Our review discusses the concept of tumor antigen heterogeneity in MM, the consequences for CAR-T cell therapies and the strategies to overcome it
    corecore