88 research outputs found

    Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals.

    Get PDF
    HIV-specific CD8+ T cells demonstrate an exhausted phenotype associated with increased expression of inhibitory receptors, decreased functional capacity, and a skewed transcriptional profile, which are only partially restored by antiretroviral treatment (ART). Expression levels of the inhibitory receptor, T cell immunoglobulin and ITIM domain (TIGIT), the co-stimulatory receptor CD226 and their ligand PVR are altered in viral infections and cancer. However, the extent to which the TIGIT/CD226/PVR-axis is affected by HIV-infection has not been characterized. Here, we report that TIGIT expression increased over time despite early initiation of ART. HIV-specific CD8+ T cells were almost exclusively TIGIT+, had an inverse expression of the transcription factors T-bet and Eomes and co-expressed PD-1, CD160 and 2B4. HIV-specific TIGIThi cells were negatively correlated with polyfunctionality and displayed a diminished expression of CD226. Furthermore, expression of PVR was increased on CD4+ T cells, especially T follicular helper (Tfh) cells, in HIV-infected lymph nodes. These results depict a skewing of the TIGIT/CD226 axis from CD226 co-stimulation towards TIGIT-mediated inhibition of CD8+ T cells, despite early ART. These findings highlight the importance of the TIGIT/CD226/PVR axis as an immune checkpoint barrier that could hinder future "cure" strategies requiring potent HIV-specific CD8+ T cells

    Characterization of HIV-Specific CD4+T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage

    Get PDF
    CD4+ T cells orchestrate immunity against viral infections, but their importance in HIV infection remains controversial. Nevertheless, comprehensive studies have associated increase in breadth and functional characteristics of HIV-specific CD4+ T cells with decreased viral load. A major challenge for the identification of HIV-specific CD4+ T cells targeting broadly reactive epitopes in populations with diverse ethnic background stems from the vast genomic variation of HIV and the diversity of the host cellular immune system. Here, we describe a novel epitope selection strategy, PopCover, that aims to resolve this challenge, and identify a set of potential HLA class II-restricted HIV epitopes that in concert will provide optimal viral and host coverage. Using this selection strategy, we identified 64 putative epitopes (peptides) located in the Gag, Nef, Env, Pol and Tat protein regions of HIV. In total, 73% of the predicted peptides were found to induce HIV-specific CD4+ T cell responses. The Gag and Nef peptides induced most responses. The vast majority of the peptides (93%) had predicted restriction to the patient’s HLA alleles. Interestingly, the viral load in viremic patients was inversely correlated to the number of targeted Gag peptides. In addition, the predicted Gag peptides were found to induce broader polyfunctional CD4+ T cell responses compared to the commonly used Gag-p55 peptide pool. These results demonstrate the power of the PopCover method for the identification of broadly recognized HLA class II-restricted epitopes. All together, selection strategies, such as PopCover, might with success be used for the evaluation of antigen-specific CD4+ T cell responses and design of future vaccines

    Targeting of conserved gag-epitopes in early HIV infection is associated with lower plasma viral load and slower CD4<sup>+</sup> T cell depletion.

    Get PDF
    We aimed to investigate whether the character of the immunodominant HIV-Gag peptide (variable or conserved) targeted by CD8(+) T cells in early HIV infection would influence the quality and quantity of T cell responses, and whether this would affect the rate of disease progression. Treatment-naive HIV-infected study subjects within the OPTIONS cohort at the University of California, San Francisco, were monitored from an estimated 44 days postinfection for up to 6 years. CD8(+) T cells responses targeting HLA-matched HIV-Gag-epitopes were identified and characterized by multicolor flow cytometry. The autologous HIV gag sequences were obtained. We demonstrate that patients targeting a conserved HIV-Gag-epitope in early infection maintained their epitope-specific CD8(+) T cell response throughout the study period. Patients targeting a variable epitope showed decreased immune responses over time, although there was no limitation of the functional profile, and they were likely to target additional variable epitopes. Maintained immune responses to conserved epitopes were associated with no or limited sequence evolution within the targeted epitope. Patients with immune responses targeting conserved epitopes had a significantly lower median viral load over time compared to patients with responses targeting a variable epitope (0.63 log(10) difference). Furthermore, the rate of CD4(+) T cell decline was slower for subjects targeting a conserved epitope (0.85% per month) compared to subjects targeting a variable epitope (1.85% per month). Previous studies have shown that targeting of antigens based on specific HLA types is associated with a better disease course. In this study we show that categorizing epitopes based on their variability is associated with clinical outcome

    Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells

    Get PDF
    The functional properties of circulating CD8+ T cells have been associated with immune control of HIV. However, viral replication occurs predominantly in secondary lymphoid tissues, such as lymph nodes (LNs). We used an integrated single-cell approach to characterize effective HIV-specific CD8+ T cell responses in the LNs of elite controllers (ECs), defined as individuals who suppress viral replication in the absence of antiretroviral therapy (ART). Higher frequencies of total memory and follicle-homing HIV-specific CD8+ T cells were detected in the LNs of ECs compared with the LNs of chronic progressors (CPs) who were not receiving ART. Moreover, HIV-specific CD8+ T cells potently suppressed viral replication without demonstrable cytolytic activity in the LNs of ECs, which harbored substantially lower amounts of CD4+ T cell–associated HIV DNA and RNA compared with the LNs of CPs. Single-cell RNA sequencing analyses further revealed a distinct transcriptional signature among HIV-specific CD8+ T cells from the LNs of ECs, typified by the down-regulation of inhibitory receptors and cytolytic molecules and the up-regulation of multiple cytokines, predicted secreted factors, and components of the protein translation machinery. Collectively, these results provide a mechanistic framework to expedite the identification of novel antiviral factors, highlighting a potential role for the localized deployment of noncytolytic functions as a determinant of immune efficacy against HIV

    Using molecular simulation to predict solute solvation and partition coefficients in solvents of different polarity

    Get PDF
    A methodology is proposed for the prediction of the Gibbs energy of solvation (Delta(Solv)G) based on MD simulations. The methodology is then used to predict DSolvG of four solutes (namely propane, benzene, ethanol and acetone) in several solvents of different polarities (including n-hexane, n-hexadecane, ethylbenzene, 1-octanol, acetone and water) while testing the validity of the TraPPE force field parameters. Excellent agreement with experimental data is obtained, with average deviations of 0.2, 1.1, 0.8 and 1.2 kJ mol(-1), for the four solutes respectively. Subsequently, partition coefficients (log P) for forty different solute/solvent systems are predicted. The a priori knowledge of partition coefficient values is of high importance in chemical and pharmaceutical separation process design or as a measure of the increasingly important environmental fate. Here again, the agreement between experimental data and simulation predictions is excellent, with an absolute average deviation of 0.28 log P units. However, this deviation can be decreased down to 0.14 log P units, just by optimizing partial atomic charges of acetone in the water phase. Consequently, molecular simulation is proven to be a tool with strong physical basis able to predict log P with competitive accuracy when compared to the popular statistical methods with weak physical basis

    <雜録>歐洲ニ於ケル農業的勞働關係

    Get PDF
    HIV infection provokes a myriad of pathological effects on the immune system where many markers of CD4+ T cell dysfunction have been identified. However, most studies to date have focused on single/double measurements of immune dysfunction, while the identification of pathological CD4+ T cell clusters that is highly associated to a specific biomarker for HIV disease remain less studied. Here, multi-parametric flow cytometry was used to investigate immune activation, exhaustion, and senescence of diverse maturation phenotypes of CD4+ T cells. The traditional method of manual data analysis was compared to a multidimensional clustering tool, FLOw Clustering with K (FLOCK) in two cohorts of 47 untreated HIV-infected individuals and 21 age and sex matched healthy controls. In order to reduce the subjectivity of FLOCK, we developed an "artificial reference", using 2% of all CD4+ gated T cells from each of the HIV-infected individuals. Principle component analyses demonstrated that using an artificial reference lead to a better separation of the HIV-infected individuals from the healthy controls as compared to using a single HIV-infected subject as a reference or analyzing data manually. Multiple correlation analyses between laboratory parameters and pathological CD4+ clusters revealed that the CD4/CD8 ratio was the preeminent surrogate marker of CD4+ T cells dysfunction using all three methods. Increased frequencies of an early-differentiated CD4+ T cell cluster with high CD38, HLA-DR and PD-1 expression were best correlated (Rho = -0.80, P value = 1.96×10-11) with HIV disease progression as measured by the CD4/CD8 ratio. The novel approach described here can be used to identify cell clusters that distinguish healthy from HIV infected subjects and is biologically relevant for HIV disease progression. These results further emphasize that a simple measurement of the CD4/CD8 ratio is a useful biomarker for assessment of combined CD4+ T cell dysfunction in chronic HIV disease

    Nucleocapsid-specific T cell responses associate with control of SARS-CoV-2 in the upper airways before seroconversion

    Get PDF
    Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19
    corecore