2,648 research outputs found

    The Inverse Amplitude Method and Adler Zeros

    Get PDF
    The Inverse Amplitude Method is a powerful unitarization technique to enlarge the energy applicability region of Effective Lagrangians. It has been widely used to describe resonances from Chiral Perturbation Theory as well as for the Strongly Interacting Symmetry Breaking Sector. In this work we show how it can be slightly modified to account also for the sub-threshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.Comment: 17 pages, 4 figure

    Nature of the f_0(600) from its N_c dependence at two loops in unitarized Chiral Perturbation Theory

    Get PDF
    By using unitarized two-loop Chiral Perturbation Theory partial waves to describe pion-pion scattering we find that the dominant component of the lightest scalar meson does not follow the q-qbar dependence on the number of colors that, in contrast, is obeyed by the lightest vectors. The method suggests that a subdominant q-qbar component of the f_0(600) possibly originates around 1 GeV.Comment: 4 pages, 1 Figure. To appear in Phys. Rev. Let

    pi-NN Coupling Constants from NN Elastic Data between 210 and 800 Mev

    Full text link
    High partial waves for pppp and npnp elastic scattering are examined critically from 210 to 800 MeV. Non-OPE contributions are compared with predictions from theory. There are some discrepancies, but sufficient agreement that values of the πNN\pi NN coupling constants g02g_0^2 for π0\pi ^0 exchange and gc2g^2_{c} for charged π\pi exchange can be derived. Results are g02=13.91±0.13±0.07g^2_0 = 13.91 \pm 0.13 \pm 0.07 and gc2=13.69±0.15±0.24g^2_c = 13.69 \pm 0.15 \pm 0.24, where the first error is statistical and the second is an estimate of the likely systematic error, arising mostly from uncertainties in the normalisation of total cross sections and dσ/dΩd\sigma/d\Omega.Comment: 21 pages of LaTeX, UI-NTH-940

    Comment on Neutron-Proton Spin-Correlation Parameter A_{ZZ} at 68 Mev

    Get PDF
    We present two arguments indicating that the large value for the ϵ1\epsilon_1 mixing parameter at 50 MeV, which the Basel group extracted from their recent AzzA_{zz} measurement, may be incorrect. First, there are nucleon-nucleon (NN) potentials which predict the ϵ1\epsilon_1 at 50 MeV substantially below the Basel value and reproduce the Basel AzzA_{zz} data accurately. Second, the large value for ϵ1\epsilon_1 at 50 MeV proposed by the Basel group can only be explained by a model for the NN interaction which is very unrealistic (no ρ\rho-meson and essentially a point-like πNN\pi NN vertex) and overpredicts the ϵ1\epsilon_1 in the energy range where it is well determined (150--500 MeV) by a factor of two.Comment: 6 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-930

    Pionic charge exchange on the proton from 40 to 250 MeV

    Full text link
    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for pi- lab energies from 39 to 247 MeV with total errors of typically 2% over the Delta-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60 to 80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Delta-resonance properties appears to be smaller than previously reported

    How Resonances can synchronise with Thresholds

    Full text link
    The mechanism by which a threshold may capture a resonance is examined. It involves a threshold cusp interfering constructively with either or both (i) a resonance produced via confinement, (ii) attractive t- and u-channel exchanges. The fo(980), X(3872) and Z(4430) are studied in detail. The fo(980) provides a valuable model of the locking mechanism. The X(3872) is too narrow to be fitted by a cusp, and requires either a resonance or virtual state. The Z(4430) can be fitted as a resonance but also can be fitted successfully by a cusp with no nearby resonant pole.Comment: 19 pages, 6 figures. Replaces 0709.125

    Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance

    Full text link
    A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv requirements. Contact M.M. Pavan for originals). Submitted to Physical Review

    The preliminary lattice QCD calculation of κ\kappa meson decay width

    Full text link
    We present a direct lattice QCD calculation of the κ\kappa meson decay width with the s-wave scattering phase shift for the isospin I=1/2I=1/2 pion-kaon (πK\pi K) system. We employ a special finite size formula, which is the extension of the Rummukainen-Gottlieb formula for the πK\pi K system in the moving frame, to calculate the scattering phase, which indicates a resonance around κ\kappa meson mass. Through the effective range formula, we extract the effective κπK\kappa \to \pi K coupling constant gκπK=4.54(76)g_{\kappa \pi K} = 4.54(76) GeV and decay width Γ=293±101\Gamma = 293 \pm 101 MeV. Our simulations are done with the MILC gauge configurations with Nf=2+1N_f=2+1 flavors of the "Asqtad" improved staggered dynamical sea quarks on a 163×4816^3\times48 lattice at (mπ+mK)/mκ0.8(m_\pi + m_K) / m_\kappa \approx 0.8 and lattice spacing a0.15a \approx 0.15 fm.Comment: To make it concise. arXiv admin note: text overlap with arXiv:1110.1422, but much of v1 text overlap with articles by same and other authors remove

    Unquenching the scalar glueball

    Get PDF
    Computations in the quenched approximation on the lattice predict the lightest glueball to be a scalar in the 1.5-1.8 GeV region. Here we calculate the dynamical effect the coupling to two pseudoscalars has on the mass, width and decay pattern of such a scalar glueball. These hadronic interactions allow mixing with the qqq \overline q scalar nonet, which is largely fixed by the well-established K_0^*(1430). This non-perturbative mixing means that, if the pure gluestate has a width to two pseudoscalar channels of ~100 MeV as predicted on the lattice, the resulting hadron has a width to these channels of only ~30 MeV with a large eta-eta component. Experimental results need to be reanalyzed in the light of these predictions to decide if either the f_0(1500) or an f_0(1710) coincides with this dressed glueball.Comment: 12 pages, LaTex, 3 Postscript figure

    Analysis of NN Amplitudes up to 2.5 GeV: An Optical Model and Geometric Interpretation

    Full text link
    We analyse the SM97 partial wave amplitudes for nucleon--nucleon (NN) scattering to 2.5 GeV, in which resonance and meson production effects are evident for energies above pion production threshold. Our analyses are based upon boson exchange or quantum inversion potentials with which the sub-threshold data are fit perfectly. Above 300 MeV they are extrapolations, to which complex short ranged Gaussian potentials are added in the spirit of the optical models of nuclear physics and of diffraction models of high energy physics. The data to 2.5 GeV are all well fit. The energy dependences of these Gaussians are very smooth save for precise effects caused by the known Δ\Delta and N^\star resonances. With this approach, we confirm that the geometrical implications of the profile function found from diffraction scattering are pertinent in the regime 300 MeV to 2.5 GeV and that the overwhelming part of meson production comes from the QCD sector of the nucleons when they have a separation of their centres of 1 to 1.2 fm. This analysis shows that the elastic NN scattering data above 300 MeV can be understood with a local potential operator as well as has the data below 300 MeV.Comment: 49 pages, including 23 figures, LaTeX2e/RevTeX/ps fil
    corecore