4 research outputs found
Experience of management of pediatric upper gastrointestinal perforations: a series of 30 cases
BackgroundThis study aimed to explore the characteristics of pediatric upper gastrointestinal (UGI) perforations, focusing on their diagnosis and management.MethodsBetween January 2013 and December 2021, 30 children with confirmed UGI perforations were enrolled, and their clinical data were analyzed. Two groups were compared according to management options, including open surgical repair (OSR) and laparoscopic/gastroscopic repair (LR).ResultsA total of 30 patients with a median age of 36.0 months (1 day–17 years) were included in the study. There were 19 and 11 patients in the LR and OSR groups, respectively. In the LR group, two patients were treated via exploratory laparoscopy and OSR, and the other patients were managed via gastroscopic repair. Ten and three patients presented the duration from symptom onset to diagnosis within 24 h (p = 0.177) and the number of patients with hemodynamically unstable perforations was 4 and 3 in the LR and OSR groups, respectively. Simple suture or clip closure was performed in 27 patients, and laparoscopically pedicled omental patch repair was performed in two patients. There was no significant difference in operative time and length of hospital stay between the LR and OSR groups. Treatment failed in two patients because of severe sepsis and multiple organ dysfunction syndrome, including one with fungal peritonitis.ConclusionSurgery for pediatric UGI perforations should be selected according to the general status of the patient, age of the patient, duration from symptom onset, inflammation, and perforation site and size. Antibiotic administration and surgical closure remain the main strategies for pediatric UGI perforations
Platelet-derived microparticles and their cargos: The past, present and future
All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Platelets form platelet-derived microparticles (PMPs) in response to activation, injury, or apoptosis. This review introduces the origin, pathway, and biological functions of PMPs and their importance in physiological and pathological processes. In addition, we review the potential applications of PMPs in cancer, vascular homeostasis, thrombosis, inflammation, neural regeneration, biomarkers, and drug carriers to achieve targeted drug delivery. In addition, we comprehensively report on the origin, biological functions, and applications of PMPs. The clinical transformation, high heterogeneity, future development direction, and limitations of the current research on PMPs are also discussed in depth. Evidence has revealed that PMPs play an important role in cell-cell communication, providing clues for the development of PMPs as carriers for relevant cell-targeted drugs. The development history and prospects of PMPs and their cargos are explored in this guidebook