11 research outputs found

    The rna-binding ubiquitin ligase mex3a affects glioblastoma tumorigenesis by inducing ubiquitylation and degradation of rig-i

    Get PDF
    Glioblastoma multiforme (GB) is the most malignant primary brain tumor in humans, with an overall survival of approximatively 15 months. The molecular heterogeneity of GB, as well as its rapid progression, invasiveness and the occurrence of drug-resistant cancer stem cells, limits the efficacy of the current treatments. In order to develop an innovative therapeutic strategy, it is mandatory to identify and characterize new molecular players responsible for the GB malignant phenotype. In this study, the RNA-binding ubiquitin ligase MEX3A was selected from a gene expression analysis performed on publicly available datasets, to assess its biological and still-unknown activity in GB tumorigenesis. We find that MEX3A is strongly up-regulated in GB specimens, and this correlates with very low protein levels of RIG-I, a tumor suppressor involved in differentiation, apoptosis and innate immune response. We demonstrate that MEX3A binds RIG-I and induces its ubiquitylation and proteasome-dependent degradation. Further, the genetic depletion of MEX3A leads to an increase of RIG-I protein levels and results in the suppression of GB cell growth. Our findings unveil a novel molecular mechanism involved in GB tumorigenesis and suggest MEX3A and RIG-I as promising therapeutic targets in GB

    ERAP1 as an emerging therapeutic target for medulloblastoma

    No full text
    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex class I (MHC-I) molecules, thereby affecting tumor immunogenicity. ERAP1 is altered in many tumors, including medulloblastoma (MB). We review the role of ERAP1 in MB development and the possibility of targeting this enzyme for MB treatment

    Proteolysis-Targeting Chimera (PROTAC): Is the Technology Looking at the Treatment of Brain Tumors?

    No full text
    Post-translational modifications, such as ubiquitylation, need to be tightly controlled to guarantee the accurate localization and activity of proteins. Ubiquitylation is a dynamic process primarily responsible for proteasome-mediated degradation of substrate proteins and crucial for both normal homeostasis and disease. Alterations in ubiquitylation lead to the upregulation of oncoproteins and/or downregulation of tumor suppressors, thus concurring in tumorigenesis. PROteolysis-TArgeting Chimera (PROTAC) is an innovative strategy that takes advantage by the cell’s own Ubiquitin-Proteasome System (UPS). Each PROTAC molecule is composed by a ligand that recruits the target protein of interest (POI), a ligand specific for an E3 ubiquitin ligase enzyme, and a linker that connects these units. Upon binding to the POI, the PROTAC recruits the E3 inducing ubiquitylation-dependent proteasome degradation of the POI. To date, PROTAC technology has entered in clinical trials for several human cancers. Here, we will discuss the advantages and limitations of PROTACs development and safety considerations for their clinical application. Furthermore, we will review the potential of PROTAC strategy as therapeutic option in brain tumor, focusing on glioblastoma

    Dual smo/braf inhibition by flavonolignans from silybum marianum†

    No full text
    Silymarin is the standardized extract from the fruits of Silybum marianum (L.) Gaertn., a well-known hepatoprotectant and antioxidant. Recently, bioactive compounds of silymarin, i.e., silybins and their 2,3-dehydro derivatives, have been shown to exert anticancer activities, yet with unclear mechanisms. This study combines in silico and in vitro methods to reveal the potential interactions of optically pure silybins and dehydrosilybins with novel protein targets. The shape and chemical similarity with approved drugs were evaluated in silico, and the potential for interaction with the Hedgehog pathway receptor Smoothened (SMO) and BRAF kinase was confirmed by molecular docking. In vitro studies on SMO and BRAF V600E kinase activity and in BRAF V600E A-375 human melanoma cell lines were further performed to examine their effects on these proteins and cancer cell lines and to corroborate computational predictions. Our in silico results direct to new potential targets of silymarin constituents as dual inhibitors of BRAF and SMO, two major targets in anticancer therapy. The experimental studies confirm that BRAF kinase and SMO may be involved in mechanisms of anticancer activities, demonstrating dose-dependent profiles, with dehydrosilybins showing stronger effects than silybins. The results of this work outline the dual SMO/BRAF effect of flavonolignans from Silybum marianum with potential clinical significance. Our approach can be applied to other natural products to reveal their potential targets and mechanism of action

    Glabrescione B delivery by self-assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma

    Get PDF
    Aberrant activation of the Hedgehog (Hh) pathway leads to the development of several tumors, including medulloblastoma (MB), the most common pediatric brain malignancy. Hh inhibitors acting on GLI1, the final effector of Hh signaling, offer a valuable opportunity to overcome the pitfalls of the existing therapies to treat Hh-driven cancers. In this study, the toxicity, delivery, biodistribution, and anticancer efficacy of Glabrescione B (GlaB), a selective GLI1 inhibitor, were investigated in preclinical models of Hh-dependent MB. To overcome its poor water solubility, GlaB was formulated with a self-assembling amphiphilic polymer forming micelles, called mPEG5kDa-cholane. mPEG5kDa-cholane/GlaB showed high drug loading and stability, low cytotoxicity, and long permanence in the bloodstream. We found that mPEG5kDa-cholane efficiently enhanced the solubility of GlaB, thus avoiding the use of organic solvents. mPEG5kDa-cholane/GlaB possesses favorable pharmacokinetics and negligible toxicity. Remarkably, GlaB encapsulated in mPEG5kDa-cholane micelles was delivered through the blood-brain barrier and drastically inhibited tumor growth in both allograft and orthotopic models of Hh-dependent MB. Our findings reveal that mPEG5kDa-cholane/GlaB is a good candidate for the treatment of Hh-driven tumors and provide relevant implications for the translation of GlaB into clinical practice

    Itch/β-Arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis

    No full text
    Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis
    corecore