5 research outputs found
Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species.
BACKGROUND: Duchenne muscular dystrophy is a severe X-linked congenital disorder characterized by lethal muscle wasting caused by the absence of the structural protein dystrophin. OBJECTIVE: Because generation of reactive oxygen species appears to play an important role in the pathogenesis of this disease, we tested whether antioxidant green tea extract could diminish muscle necrosis in the mdx mouse dystrophy model. DESIGN: A diet supplemented with 0.01% or 0.05% green tea extract was fed to dams and neonates for 4 wk beginning on the day of birth. Muscle necrosis and regeneration were determined in stained cryosections of soleus and elongator digitorum longus muscles. Radical scavenging by green tea extract was determined in differentiated cultured C2C12 cells treated with tert-butylhydroperoxide, with the use of 2',7'-dichlorofluorescin diacetate as a radical detector. RESULTS: This feeding regimen significantly and dose-dependently reduced necrosis in the fast-twitch muscle elongator digitorum longus but at the doses tested had no effect on the slow-twitch soleus muscle. Green tea extract concentration-dependently decreased oxidative stress induced by tert-butylhydroperoxide treatment of cultured mouse C2C12 myotubes. The lower effective dose tested in mdx mice corresponds to approximately equal to 1.4 L (7 cups) green tea/d in humans. CONCLUSION: Green tea extract may improve muscle health by reducing or delaying necrosis in mdx mice by an antioxidant mechanism
Metabolism-dependent stimulation of reactive oxygen species and DNA synthesis by cyclosporin A in rat smooth muscle cells.
The clinical use of the immunosuppressive drug cyclosporin A (CsA) is limited by its side effects, namely hypertension and nephrotoxicity. It has been proposed that reactive oxygen species (ROS) could be involved as mediators of the toxic effects of CsA. Here, we have studied the possible interrelationship between CsA metabolism and production of ROS. Using cultures of rat aortic smooth muscle cells (RASMC), CsA (1 microM) produced a rapid (within 10 min) increase in reactive oxygen species, detected by oxidation of the fluorescent probes 2,7-dichlorofluorescin and dihydrorhodamine-123. DNA synthesis was increased in the presence of CsA as assessed by [3H]thymidine incorporation. The superoxide dismutase inhibitor diethyldithiocarbamate (1 mM) and the iron chelator desferal (5 microM), as well as ketoconazole (1 microM) and troleandomycin (10 microM), inhibitors of the cytochrome P-450 3A, were able to block both effects. High-performance liquid chromatography analysis revealed that RASMC were capable to metabolize CsA to its primary metabolites (AM1, AM9 and AM4N), and that their formation was inhibited by ketoconazole and troleandomycin. Furthermore, mRNAs encoding cytochrome P-450 3A1 and 3A2 were detected in RASMC by reverse transcriptase-polymerase chain reaction. Our data suggest that CsA is metabolized by cytochrome P-450 3A in RASMC producing reactive oxygen species, most likely superoxide and the hydroxyl radical, known to damage lipids and DNA