2 research outputs found

    Parallel Bulk-Heterojunction Solar Cell by Electrostatically Driven Phase Separation

    No full text
    Thermal co-evaporation of C-60 fullerene and two merocyanine dyes affords bulk heterojunction solar cells with improved short-circuit currents and power conversion efficiencies in comparison with the respective single donor cells. These results are rationalized by the formation of three distinct subphases driven by differences in molecular shape and electrostatic interactions

    Simple, Highly Efficient Vacuum-Processed Bulk Heterojunction Solar Cells Based on Merocyanine Dyes

    No full text
    In order to be competitive on the energy market, organic solar cells with higher efficiency are needed. To date, polymer solar cells have retained the lead with efficiencies of up to 8%. However, research on small molecule solar cells has been catching up throughout recent years and is showing similar efficiencies, however, only for more sophisticated multilayer device configurations. In this work, a simple, highly efficient, vacuum-processed small molecule solar cell based on merocyanine dyes - traditional colorants that can easily be mass-produced and purified - is presented. In the past, merocyanines have been successfully introduced in solution-processed as well as vacuum-processed devices, demonstrating efficiencies up to 4.9%. Here, further optimization of devices is achieved while keeping the same simple layer stack, ultimately leading to efficiencies beyond the 6% mark. In addition, physical properties such as the charge carrier transport and the cell performance under various light intensities are addressed
    corecore