581 research outputs found

    Magnetic Behavior of a Mixed Ising Ferrimagnetic Model in an Oscillating Magnetic Field

    Full text link
    The magnetic behavior of a mixed Ising ferrimagnetic system on a square lattice, in which the two interpenetrating square sublattices have spins +- 1/2 and spins +-1,0, in the presence of an oscillating magnetic field has been studied with Monte Carlo techniques. The model includes nearest and next-nearest neighbor interactions, a crystal field and the oscillating external field. By studying the hysteretic response of this model to an oscillating field we found that it qualitatively reproduces the increasing of the coercive field at the compensation temperature observed in real ferrimagnets, a crucial feature for magneto-optical applications. This behavior is basically independent of the frequency of the field and the size of the system. The magnetic response of the system is related to a dynamical transition from a paramagnetic to a ferromagnetic phase and to the different temperature dependence of the relaxation times of both sublattices.Comment: 10 figures. To be published in Phys.Rev

    Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density

    Full text link
    We construct improved quantum Monte Carlo estimators for the spherically- and system-averaged electron pair density (i.e. the probability density of finding two electrons separated by a relative distance u), also known as the spherically-averaged electron position intracule density I(u), using the general zero-variance zero-bias principle for observables, introduced by Assaraf and Caffarel. The calculation of I(u) is made vastly more efficient by replacing the average of the local delta-function operator by the average of a smooth non-local operator that has several orders of magnitude smaller variance. These new estimators also reduce the systematic error (or bias) of the intracule density due to the approximate trial wave function. Used in combination with the optimization of an increasing number of parameters in trial Jastrow-Slater wave functions, they allow one to obtain well converged correlated intracule densities for atoms and molecules. These ideas can be applied to calculating any pair-correlation function in classical or quantum Monte Carlo calculations.Comment: 13 pages, 9 figures, published versio

    Excited states of beryllium atom from explicitly correlated wave functions

    Full text link
    A study of the first excited states of beryllium atom starting from explicitly correlated wave functions is carried out. Several properties are obtained and discussed focusing on the analysis of the Hund's rules in terms of the single--particle and electron pair intracule and extracule densities. A systematic study of the differences on the electronic distributions of the singlet and triplet states is carried out. The trial wave function used to describe the different bound states consists of a generalized Jastrow-type correlation factor times a configuration interaction model wave function. This model wave function has been fixed by using a generalization of the optimized effective potential method to deal with multiconfiguration wave functions. The optimization of the wave function and the calculation of the different quantities is carried out by means of the Variational Monte Carlo method.Comment: 28 pages, 6 figure
    • …
    corecore