3 research outputs found

    Limitations of Nerve Fiber Density as a Prognostic Marker in Predicting Oncological Outcomes in Hepatocellular Carcinoma

    No full text
    It has been shown that the presence and density of nerve fibers (NFs; NFD) in the tumor microenvironment (TME) may play an important prognostic role in predicting long-term oncological outcomes in various malignancies. However, the role of NFD in the prognosis of hepatocellular carcinoma (HCC) is yet to be explored. To this end, we aimed to investigate the impact of NFs on oncological outcomes in a large European single-center cohort of HCC patients. In total, 153 HCC patients who underwent partial hepatectomy in a curative-intent setting between 2010 and 2021 at our university hospital were included in this study. Group comparisons between patients with and without NFs were conducted and the association of recurrence-free survival (RFS) and overall survival (OS) with the presence of NFs and other clinico-pathological variables were determined by univariate and multivariable Cox regression models. Patients with NFs in the TME presented with a median OS of 66 months (95% CI: 30-102) compared to 42 months (95% CI: 20-63) for patients without NFs (p = 0.804 log-rank). Further, RFS was 26 months (95% CI: 12-40) for patients with NFs compared to 18 months (95% CI: 9-27) for patients without NFs (p = 0.666 log-rank). In a subgroup analysis, patients with NFD ≤ 5 showed a median OS of 54 months (95% CI: 11-97) compared to 48 months (95% CI: 0-106) for the group of patients with NFD > 5 (p = 0.787 log-rank). Correspondingly, the RFS was 26 months (95% CI: 10-42) in patients with NFD ≤ 5 and 29 months (95% CI: 14-44) for the subcohort with NFD > 5 (p = 0.421 log-rank). Further, group comparisons showed no clinico-pathological differences between patients with NFs (n = 76) and without NFs (n = 77) and NFs were not associated with OS (p = 0.806) and RFS (p = 0.322) in our Cox regression models. In contrast to observations in various malignancies, NFs in the TME and NFD are not associated with long-term oncological outcomes in HCC patients undergoing surgery

    Inflammation and vascular remodeling in COVID-19 hearts

    No full text
    A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + —macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10456-022-09860-7
    corecore