53 research outputs found
State of the climate in 2018
In 2018, the dominant greenhouse gases released into Earthâs atmosphereâcarbon dioxide, methane, and nitrous oxideâcontinued their increase. The annual global average carbon dioxide concentration at Earthâs surface was 407.4 Âą 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W mâ2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La NiĂąa in early 2018 transitioning to a weak El NiĂąo by the yearâs end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981â2010 average, tying for third highest in the 118-year record, following 2016 and 2017. Juneâs Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°â0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000â18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El NiĂąo year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° Âą 0.01°C decadeâ1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981â2010 average of 82. Eleven tropical cyclones reached SaffirâSimpson scale Category 5 intensity. North Atlantic Major Hurricane Michaelâs landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and RĂŠunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at WaipÄ Gardens (Kauai) on 14â15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000â10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPDuring autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
Real-Time Solvent Tolerance Analysis of Pseudomonas sp. Strain VLB120ÎC Catalytic Biofilmsâż â
Biofilms are ubiquitous surface-associated microbial communities embedded in an extracellular polymeric (EPS) matrix, which gives the biofilm structural integrity and strength. It is often reported that biofilm-grown cells exhibit enhanced tolerance toward adverse environmental stress conditions, and thus there has been a growing interest in recent years to use biofilms for biotechnological applications. We present a time- and locus-resolved, noninvasive, quantitative approach to study biofilm development and its response to the toxic solvent styrene. Pseudomonas sp. strain VLB120ÎC-BT-gfp1 was grown in modified flow-cell reactors and exposed to the solvent styrene. Biofilm-grown cells displayed stable catalytic activity, producing (S)-styrene oxide continuously during the experimental period. The pillar-like structure and growth rate of the biofilm was not influenced by the presence of the solvent. However, the cells experience severe membrane damage during styrene treatment, although they obviously are able to adapt to the solvent, as the amount of permeabilized cells decreased from 75 to 80% down to 40% in 48 h. Concomitantly, the fraction of concanavalin A (ConA)-stainable EPS increased, substantiating the assumption that those polysaccharides play a major role in structural integrity and enhanced biofilm tolerance toward toxic environments. Compared to control experiments with planktonic grown cells, the Pseudomonas biofilm adapted much better to toxic concentrations of styrene, as nearly 65% of biofilm cells were not permeabilized (viable), compared to only 7% in analogous planktonic cultures. These findings underline the robustness of biofilms under stress conditions and its potential for fine chemical syntheses
Integrated One-Pot Enrichment and Immobilization of Styrene Monooxygenase (StyA) Using SEPABEAD EC-EA and EC-Q1A Anion-Exchange Carriers
A straightforward one-pot procedure combining enrichment and immobilization of recombinantely expressed FADH2 dependent styrene monooxygenase (StyA) directly from Escherichia coli cell extracts was investigated. Sepabeads EC-EA and EC-Q1A anion-exchange carriers were employed to non-covalently adsorb StyA from the cell extracts depending on basic parameters such as varying initial protein concentrations and pH. The protein fraction of the cell extract contained around 25% StyA. At low initial protein concentrations (2.5 mg mLâ1) and pH 6, the enzyme could be enriched up to 52.4% on Sepabeads EC-EA and up to 46.0% on Sepabeads EC-Q1A, accounting for an almost complete StyA adsorption from the cell extracts. Higher initial protein concentrations were necessary to exploit the high loading capacity of the beads. At 20 mg mLâ1, up to 37.6% of the theoretical bead loading capacity could be utilized for StyA binding using Sepabeads EC-EA, and 34.0% using Sepabeads EC-Q1A. For both carriers, protein leakage under reaction conditions could be reduced to less than 2%. During assays, the FADH2 cofactor necessary for StyA activity was supplied by the NADH-FAD reductase component styrene monooxygenase B (StyB). StyA immobilized on Sepabeads EC-Q1A displayed twice as high styrene epoxidation rates (0.2 U mgStyAâ1) as compared to Sepabeads EC-EA. This activity could be increased to 0.7 U mgStyAâ1 by co-immobilizing StyB on Sepabeads EC-Q1A, which corresponds to 33% of the soluble StyA activity
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis
Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed
Growth of Pseudomonas taiwanensis VLB120âC biofilms in the presence of n-butanol
Biocatalytic processes often encounter problems due to toxic reactants and products, which reduce biocatalyst viability. Thus, robust organisms capable of tolerating or adapting towards such compounds are of high importance. This study systematically investigated the physiological response of Pseudomonas taiwanensis VLB120âC biofilms when exposed to n-butanol, one of the potential next generation biofuels as well as a toxic substance using microscopic and biochemical methods. Initially P.\ua0taiwanensis VLB120âC biofilms did not show any observable growth in the presence of 3% butanol. Prolonged cultivation of 10\ua0days led to biofilm adaptation, glucose and oxygen uptake doubled and consequently it was possible to quantify biomass. Complementing the medium with yeast extract and presumably reducing the metabolic burden caused by butanol exposure further increased the biomass yield. In course of cultivation cells reduced their size in the presence of n-butanol which results in an enlarged surface-to-volume ratio and thus increased nutrient uptake. Finally, biofilm enhanced its extracellular polymeric substances (EPS) production when exposed to n-butanol. The predominant response of these biofilms under n-butanol stress are higher energy demand, increased biomass yield upon medium complements, larger surface-to-volume ratio and enhanced EPS production. Although we observed a distinct increase in biomass in the presence of 3% butanol it was not possible to cultivate P.\ua0taiwanensis VLB120âC biofilms at higher n-butanol concentrations. Thereby this study shows that biofilms are not per se tolerant against solvents, and need to adapt to toxic n-butanol concentrations
Biocatalytic Production of Catechols Using a High Pressure Tube-in-Tube Segmented Flow Microreactor
This
study reports the synthesis of 3-phenylcatechol at the preparative
scale using a continuous segmented flow tube-in-tube reactor (TiTR).
2-Hydroxybiphenyl 3-monooxygenase (HbpA) was applied as a biocatalyst
for the hydroxylation reaction, which is dependent on the substrate
2-hydroxybiphenyl, NADH, and oxygen. While the regeneration of the
cofactor NADH was guaranteed by formate dehydrogenase (FDH), oxygen
was supplied via the membrane surface from the outside of the reactor
system. The oxygen transfer rate through the membrane of the TiTR
was determined to be 24 Îźmol O<sub>2</sub> min<sup>â1</sup> mL<sup>â1</sup> emphasizing the potential of the TiTR as
promising technology for realizing gas-dependent enzymatic reactions.
Residence time and total turnover number have been identified as key
limiting parameters. It was possible to scale-up this system by extending
the TiTR by additional residence time units. This allowed synthesis
of 1 g of 3-phenylcatechol at a high space time yield of 14.5 g L<sup>â1</sup> h<sup>â1</sup>
Antimicrobial susceptibility patterns of respiratory Gram-negative bacterial isolates from COVID-19 patients in Switzerland
BACKGROUND
Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated.
METHODS
We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing.
RESULTS
Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to β-lactams and quinolones.
CONCLUSIONS
Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved
- âŚ