40 research outputs found
Neutrino induced transitions between the ground states of the A=12 triad
Neutrino induced reactions on C, an ingredient of liquid
scintillators, have been studied in several experiments. We show that for
currently available neutrino energies, 300 MeV, calculated
exclusive cross sections CN for both muon
and electron neutrinos are essentially model independent, provided the
calculations simultaneously describe the rates of several other reactions
involving the same states or their isobar analogs. The calculations agree well
with the measured cross sections, which can be therefore used to check the
normalization of the incident neutrino spectrum and the efficiency of the
detector.Comment: 9 pages REVTEX, 2 postscript figures, text and figures available at
http://www.krl.caltech.edu/preprints/MAP.htm
Muon capture by 3He nuclei followed by proton and deuteron production
The paper describes an experiment aimed at studying muon capture by
nuclei in pure and mixtures at various densities. Energy distributions of
protons and deuterons produced via and are measured for the
energy intervals MeV and MeV, respectively. Muon capture
rates, and are obtained using two different analysis methods. The
least--squares methods gives , . The Bayes theorem
gives ,
. The experimental
differential capture rates, and , are compared with theoretical
calculations performed using the plane--wave impulse approximation (PWIA) with
the realistic NN interaction Bonn B potential. Extrapolation to the full energy
range yields total proton and deuteron capture rates in good agreement with
former results.Comment: 17 pages, 13 figures, accepted for publication in PR
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Search for NN-decoupled dibaryons using the process below the pion production threshold
The energy spectrum for high energy -rays ( MeV)
from the process emitted at in the laboratory
frame has been measured at an energy below the pion production threshold,
namely, at 216 MeV. The resulting photon energy spectrum extracted from
coincidence events consists of a narrow peak at a photon energy
of about 24 MeV and a relatively broad peak in the energy range of (50 - 70)
MeV. The statistical significances for the narrow and broad peaks are
5.3 and 3.5, respectively. This behavior of the photon energy
spectrum is interpreted as a signature of the exotic dibaryon resonance
with a mass of about 1956 MeV which is assumed to be formed in the
radiative process followed by its electromagnetic
decay via the mode. The experimental spectrum is
compared with those obtained by means of Monte Carlo simulations.Comment: 14 pages, LaTex, 6 eps-figures, accepted for publication in
Phys.Rev.
