52 research outputs found

    Direct tRNA-protein interactions in ribosomal complexes.

    No full text
    Nucleotide residues in E. coli tRNA(Phe) interacting directly with proteins in pre- and posttranslocated ribosomal complexes have been identified by UV-induced cross-linking. In the tRNA(Phe) molecule located in the Ab-site (pretranslocated complex) residues A9, G18, A26 and U59 are cross-linked with proteins S10, L27, S7 and L2, respectively. In tRNA(Phe) located in the Pt-site (posttranslocated complex) residues C17, G44, C56 and U60 are cross-linked with proteins L2, L5, L27 and S9, respectively. The same cross-links (except for G44-L5) have been found for tRNA in the Pb-site of the pretranslocated ribosomal complex. None of the tRNA(Phe) residues cross-linked with proteins in the complexes examined by us are involved in the stabilization of the secondary structure, but residues A9, G18, A26, G44 and C56 participate in stabilization of tRNA tertiary structure. Since translocation of tRNA(Phe) from Ab- to P-site is accompanied by changes of tRNA contacts with proteins L2 and L27, we postulate that this translocation is coupled with tRNA turn around the axis joining the anticodon loop with the CCA-end of the molecule. This is in agreement with the idea about the presence of a kink in mRNA between codons located in the ribosomal A- and P-sites. In all E. coli tRNAs with known primary structure positions 18 and 56, interacting with L27 protein, when tRNA is located either in A- or P-site, are invariant, whereas positions 17 and 60, interacting with proteins only when tRNA is in the P-site, are strongly conserved. In positions 9, 26 and 59 purines are the preferred residues. In most E. coli tRNAs deviations from the consensus in these three positions is strongly correlated

    Polynucleotide-protein interactions in the translation system. Identification of proteins interacting with tRNA in the A- and P-sites of E. coli ribosomes.

    No full text
    Ultraviolet irradiation (lambda = 254 nm) of ternary complexes of E. coli 70 S ribosomes with poly(U) and either Phe-tRNAPhe (in the A-site) or NAcPhe-tRNAPhe (in the P-site) effectively induces covalent linking of tRNA with a limited number of ribosomal proteins. The data obtained indicate that in both sites tRNA is in contact with proteins of both 30 S and 50 S subunits (S5, S7, S9, S10, L2, L6 and L16 proteins in the A-site and S7, S9, S11, L2, L4, L7/L12 and L27 proteins in the P-site). Similar sets of proteins are in contact with total aminoacyl-tRNA and N-acetylaminoacyl-tRNA. However, here no contacts of tRNA in the P-site with the S7 and L25/S17 proteins were revealed, whereas in the A-site total aminoacyl-tRNA contacts L7/L12. Proteins S9, L2 and, probably, S7 and L7/L12 are common to both sites

    The photochemistry of purine components of nucleic acids. I. The efficiency of photolysis of adenine and guanine derivatives in aqueous solution.

    No full text
    It has been shown that the quantum yield of the photochemical conversion of adenine and the corresponding nucleosides and nucleoside 5'-phosphates in liquid (pH 5.6 and 2.0) and frozen aqueous solutions do not exceed 10(-4). The quantum yield of the photoconversion of guanine-containing nucleosides and nucleoside 5'-phosphates in liquid aqueous solution (pH 5.6) after removal of oxygen by passing through nitrogen and in the frozen state do not exceed 0.3 x 10(-4). The quantum yield in oxygen-containing liquid aqueous solutions increase to 0.3 x 10(-3), i.e. to values commensurate with the quantum yield of pyrimidine photolysis
    • …
    corecore