14 research outputs found

    Supercritical fluid recycle for surge control of CO2 centrifugal compressors

    Get PDF
    AbstractThis paper presents computer-based design and analysis of control systems for centrifugal compressors when the operating fluid is supercritical CO2.It reports a non-linear dynamic model including a main forward compression line and two different configurations for the recycle antisurge line. Disturbance scenarios are proposed for testing the configurations and performance indicators are suggested to evaluate control performance and power consumption of the compression system.The paper demonstrates that compared to the hot recycle, the process configuration including a cold gas recycle has better overall stability, but higher power consumption and lower values for the control performance indicators. Based on the previous considerations, the paper gives suggestions regarding the choice of the recycle configuration. Moreover it compares subcritical and supercritical compression during surge prevention and highlights the importance of the selection of the gas recycle configuration when full recycle is needed

    Can carbon capture and storage unlock `unburnable carbon'?

    No full text
    The concept of ‘unburnable carbon’ emerged in 2011, and stems from the observation that if all known fossil fuel reserves are extracted and converted to CO 2 (unabated), it would exceed the carbon budget and have a very significant effect on the climate. Therefore, if global warming is to be limited to the COP21 target, some of the known fossil fuel reserves should remain unburnt. Sev eral recent reports have highlighted the scale of the challenge, drawing on scenarios of climate change mitigation and their implications for the projected consump tion of fossil fuels. Carbon Capture and Storage (CCS) is a critical and available mitigation opportunity and its contribution to timely and cost - effective decarbonis atio n of the energy system is widely recognised. However, while some st udies have considered the role of CCS in enabling access to more fossil fuels, no detailed analysis on this issue has been undertaken. Th is paper presents a critical review focusing on the technologies that can be applied to en able access to, or ‘unlock’, fossil fuel reserves in a way that will meet climate targets and mitigate climate change. It also quantifies the impact of CCS in unlocking unburnable carbon in the first and in the second half of the century

    Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector

    Get PDF
    This paper presents the formulation and application of a novel agent-based integrated assessment approach to model the attributes, objectives and decision-making process of investors in a long-term energy transition in India’s iron and steel sector. It takes empirical data from an on-site survey of 108 operating plants in Maharashtra to formulate objectives and decision-making metrics for the agent-based model and simulates possible future portfolio mixes. The studied decision drivers were capital costs, operating costs (including fuel consumption), a combination of capital and operating costs, and net present value. Where investors used a weighted combination of capital cost and operating costs, a natural gas uptake of ~12PJ was obtained and the highest cumulative emissions reduction was obtained, 2 Mt CO2 in the period from 2020 to 2050. Conversely if net present value alone is used, cumulative emissions reduction in the same period was lower, 1.6 Mt CO2, and the cumulative uptake of natural gas was equal to 15PJ. Results show how the differing upfront investment cost of the technology options could cause prevalence of high-carbon fuels, particularly heavy fuel oil, in the final mix. Results also represent the unique heterogeneity of fuel-switching industrial investors with distinct investment goals and limited foresight on costs. The perception of high capital expenditures for decarbonisation represents a significant barrier to the energy transition in industry and should be addressed via effective policy making (e.g. carbon policy/price)

    Long-term development of the industrial sector – case study about electrification, fuel switching, and CCS in the USA

    Get PDF
    In the urgent quest for solutions to mitigate climate change, the industry is one of the most challenging sectors to decarbonize. In this work, a novel simulation framework is presented to model the investment decisions in industry, the Industrial Sector Module (ISM) of the ModUlar energy system Simulation Environment (MUSE). This work uses the ISM to quantify effects of three combined measures for CO2 emission reduction in industry, i.e. fuel switching, electrification, and adoption of Carbon Capture and Storage (CCS) and to simulate plausible scenarios (base scenario and climate ambitious scenario) for curbing emissions in the iron and steel sector in the USA between 2010 and 2050. Results show that when the climate ambitious scenario is applied, the cumulative emissions into the atmosphere (2,158 Mt CO2) are reduced by 40% in comparison to the base scenario (3,608 Mt CO2). This decarbonization gap between both scenarios intensifies over time; in the year 2050, the CO2 intensity in the climate ambitious scenario is 81% lower in comparison to the base scenario. The study shows that major contributions to industry decarbonization can come from the further uptake of secondary steel production. Results show also that a carbon tax drives the decarbonization process but is not sufficient on its own. In addition, the uptake of innovative low-carbon breakthrough technologies is necessary. It is concluded that industrial electrification is counterproductive for climate change mitigation, if electricity is not provided by low-carbon sources. Overall, fuel switching, industrial electrification, and CCS adoption as single measures have a limited decarbonization impact, compared to an integrated approach that implements all the measures together providing a much more attractive solution for CO2 mitigation

    An integrated control technique for compressor operation

    Get PDF

    Control of centrifugal compressors via model predictive control for enhanced oil recovery applications

    No full text
    © 2015, IFAG (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.This paper proposes a control system for integrated pressure and surge control of centrifugal compressors for enhanced oil recovery application. The proposed control system is based on linear model predictive control. A fully validated non-linear dynamic model was developed in order to simulate the operation of the compressor at full and partial load. The model of the compression system includes a main process line with the compressor and a recycle line with the antisurge recycle valve. Different disturbance and control tuning scenarios were tested and the response of the model predictive controller was analysed, evaluated and also compared with a traditional control system. Temperature effects have been taken into account in the model of the process and in the constraint formulation of the MPC optimization problem. The results show that the proposed control technique is able to meet the process demand while preventing surge and also minimizing the amount of gas recycle

    Long-term decarbonisation scenarios in the industrial sector

    No full text
    Decarbonisation targets will drive every sector in the energy system to rapidly adopt innovative technologies to achieve the dramatic emissions reductions required. Among all, sectors like in- dustry, which currently exhibit a very high energy intensity, are likely to undergo major changes. This manuscript focuses on the appraisal of the effects of a CO 2 tax in the investment and operation decisions in industry. Within the larger modelling framework typical of an integrated assessment model, the sector is modelled including the top-energy intensive industries, such as those man- ufacturing pulp and paper, iron and steel, chemicals and petrochemicals, the non-ferrous metals as well as non-metallic minerals. The simulations are carried out using a novel energy systems model, MUSE, the Modular Universal energy systems Simulation Environment model

    Modelling the impacts of investors' decision making on decarbonisation pathways in industry

    No full text
    The Paris Climate agreement calls for dramatic changes in the energy system. This will be challenging for demand sectors like industry, which is notoriously energy intensive. Although increased efficiency has proven to be suitable options to reduce energy and environmental impacts, stringent regulations on carbon will require this sector to undergo an unprecedented innovation effort, which will go well beyond cost efficiency measures to include the deployment of novel technologies and, most likely, of carbon capture and storage (CCS). This manuscript focuses on the uptake of novel technologies in the industrial sector and the barriers which might prevent or slow down the pace of innovation. Some of these barriers are technological as they depend on the availability and the technology readiness level of a specific technology. Others are instead related to the attitude that investors show towards innovative and the inherent level of risk. Among the many innovation options in the industrial sector, the focus here is on the uptake of the carbon capture and storage technologies. The industrial sector is modelled including the top-energy intensive industries, such as those manufacturing pulp and paper, iron and steel, chemicals and petrochemicals, the non-ferrous metals as well as non-metallic minerals. The simulations are carried out using a novel energy systems model, MUSE, the Modular energy systems Simulation Environment

    An agent-based modelling approach to simulate the investment decision of industrial enterprises

    No full text
    China is the leading ammonia producer and relies on a coal-based technology which makes the already energy intensive Haber-Bosch process, one of the most emission intensive in the world. This work is the first to propose an agent-based modelling framework to model the Chinese ammonia industry as it characterises the specific goals and barriers towards fuel switching and carbon capture and storage adoption for small, medium, and large enterprises either private or state-owned. The results show that facilitated access to capital makes investments in sustainable technologies more attractive for all firms, especially for small and medium enterprises. Without policy instruments such as carbon price, the decrease in emissions in the long-term is due to investments in natural gas-based technologies, as they typically have lower capital and operating costs, and also lower electricity consumption than coal-based production. Conversely, with policy instruments in place, a strong decrease in emissions occurs between 2060 and 2080 due to investors choosing natural gas and biomethane-based technologies, with carbon capture and storage. In the long term, natural gas and biomethane could compete, with the outcome depending on infrastructure, supply chain availability and land use constraints
    corecore