94 research outputs found

    Characterisation of MEAs for Electrochemical Energy Conversion Using an Easy Test Technique

    Get PDF
    The paper describes an EasyTest cell developed for simple, safe and inexpensive to run testing and optimisation of the active materials (catalysts, catalytic supports, polymer membrane electrolytes) and electrode structures utilized in PEM Fuel cells and Electrolysers. The main advantages of the new EasyTest technique are demonstrated by a comparative study on the performance of two types of membrane electrode assemblies for electrochemical energy conversion. Nafion and PBI-based polymer electrolyte membranes covered with catalytic layers containing 20 % Pt dispersed on carbon black (E-TEK, De Nora) are tested as hydrogen electrodes working in a fuel cell and an electrolyser mode at two characteristic temperatures, varying the total partial pressure in the cell. The PBI-based membrane electrode assembly (MEA) gives lower current densities compared to that containing Nafion, while its performance remains stable in a much broader potential range. At overpotentials of about = 300–350 mV the Nafion MEA reaches a limiting current density, while in the case of PBI-based MEA such an effect is not registered in the whole potential range tested

    Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Get PDF
    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially

    Thermodynamics and Kinetics of Nucleation

    No full text
    corecore